Advertisement

Computation of Unsteady Separation Using Lagrangian Procedures

  • L. L. Van Dommelen
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The interaction between increased knowledge of unsteady separation processes and computational techniques is examined, emphasizing the use of Lagrangian coordinates. Examples include boundary layer solutions of two dimensional unsteady flows, and separation from rotating and translating spheres. Advances in Lagrangian techniques for the Navier-Stokes equations are illustrated by means of high resolution random-walk computations of the impulsively started circular cylinder.

Keywords

Boundary Layer Circular Cylinder Boundary Layer Equation External Flow Meridional Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sears, W.P. and Telionis, D.P., “Boundary Layer Separation in Unsteady Flow”, SIAM J. Appl Math, Vol. 28, 1975, pp. 215–235.ADSMATHGoogle Scholar
  2. 2.
    Ece, M.C., Walker, J.D.A. and Doligalski, T.L., “The boundary layer on an impulsively started rotating and translating cylinder.” Phys. Fluids, Vol. 27, 1984, pp. 1077–1089.ADSMATHCrossRefGoogle Scholar
  3. 3.
    Cebeci, T., “Unsteady separation,” in “Proc. Symp. Num. Phys. Aspects Aerod. Flows,” Springer-Verlag 19 82.pp. 265–277.Google Scholar
  4. 4.
    Cebeci, T., “Unsteady boundary layers with an intelligent numerical scheme”: private communication 1984.Google Scholar
  5. 5.
    Wang, K.C., “On the current controversy about unsteady separation,” in “Proc. Symp. Num. Phys. Aspects Aerod. Flows,” Springer-Verlag 1982.pp. 279–291Google Scholar
  6. 6.
    Ingham, D.B., “Unsteady separation,” J. Comp. Phys., to appear.Google Scholar
  7. 7.
    Cowley, S.J., “Computer extension and analytic continuation of Blasius’ expansion for impulsive flow past a circular cylinder,” J. Fluid Mech., Vol. 135, 1984, pp. 389–405.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Van Dommelen, L.L. and Shen, S.F., “”, “Proc. Symp. Num. Phys. Aspects Aerod. Flows,” Springer-Verlag 1982.pp. 293–311.Google Scholar
  9. 9.
    Van Dommelen, L.L., “Unsteady Separation”, Ph.D. thesis, Cornell University, 1981.Google Scholar
  10. 10.
    Elliot, J.S., Cowley, S.J. and Smith, F.T., “Breakdown of boundary layers: (i) on moving surfaces (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow,” Geophys. Astrophys. Fluid Dyn., Vol. 25, 1983, pp. 77–138.ADSCrossRefGoogle Scholar
  11. 11.
    Fritts, M.J., “Two-dimensional Lagrangian fluid dynamics using triangular grids”, in “Finite Difference Techniques for Vectorized Fluid Dynamics Calculations”, (D.L. Book, Ed. ), Springer-Verlag 1981.pp. 98–116.Google Scholar
  12. 12.
    Van Dommelen, L.L. and Cowley, S.J., “Lagrangian numerical and analytical description of unsteady boundary layer separation. Part 2”, J. Fluid Mech., in preparation.Google Scholar
  13. 13.
    Thompson, Joe E., Warsi, Z.U.A. and Mastin, C.W., “Numerical grid generation”, Elsevier, 1985.MATHGoogle Scholar
  14. 14.
    Beam, R.M. and Warming, R.F., “An implicit factored scheme for the compressible Navier-Stokes equations”, AIAA J., Vol. 16, 1978, pp. 393–402.ADSMATHCrossRefGoogle Scholar
  15. 15.
    Van Dommelen, L.L., “Vectorized Lagrangian Computation of Unsteady Separation”, AIAA paper 85–1492-CP, 7th Comp. Fluid Dyn. Conf., Cincinnati, Ohio, Aug. 1985.Google Scholar
  16. 16.
    Chorin, A.J., “Numerical Study of Slightly Viscous Flow”, Jay. Vol. 57, 1973, pp. 785–796.MathSciNetGoogle Scholar
  17. 17.
    Banks, W.H.B. and Zaturska, M.B., “The collision of unsteady laminar boundary layers”, J. Engineering Math., Vol. 13, 1979, pp. 193–212.ADSMATHCrossRefGoogle Scholar
  18. 18.
    Stewartson, K., Simpson, C.J. and Bodonyi, R.J, R.J. “The unsteady boundary layer on a rotating disk in a counter rotating fluid. Part 2”, J. Fluid Mech. Vol. 121, 1982, pp. 507–515.MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Dennis, S.C.R., and Ingham, D.B., “The boundary layer on a fixed sphere on the axis of an unbounded rotating fluid”, J. Fluid Mech, Vol. 123, 1982, pp. 219–236.MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Loc, T.P., “Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder”, J. Fluid Mech., Vol. 100, 1980, pp. 111–128.ADSMATHCrossRefGoogle Scholar
  21. 21.
    Lourenco, L.M., and Krothapalli, A., “Application of PIDV to the study of the flow past a circular cylinder” Proceedings of Third International Symposium on Application of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal,July 1986.Google Scholar
  22. 22.
    Thoman, D.C., and Szewczyk, A.A., “Time dependent viscous flow over a circular cylinder”, Phys. Fluids. Suppl. II, 1969. pp. 76–86.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1987

Authors and Affiliations

  • L. L. Van Dommelen
    • 1
  1. 1.FAMU/FSU College of Engineering Dept. of Mechanical EngineeringFlorida State UniversityTallahasseeUSA

Personalised recommendations