Skip to main content

Breakdown of Steady and Unsteady Interacting Boundary Layers

  • Conference paper
Book cover Boundary-Layer Separation

Summary

It is known that the classical boundary-layer solution breaks down by the appearance of the Goldstein singularity in a steady solution or Van Dommelen’s singularity in an unsteady solution. Interaction between the inviscid flow and the boundary layer removes the Goldstein singularity, until a new critical parameter is reached, corresponding to a marginal separation in the asymptotic triple-deck description. In earlier studies instabilities were encountered in interacting boundary-layer calculations of steady flow past an indented plate, which might be related to the breakdown of the marginal separation. The present study identifies them as numerical. Further, until now it was unknown whether the unsteady interacting boundary-layer approach would remove Van Dommelen’s singularity in the classical boundary layer around the impulsively started cylinder. It is shown that its appearance is at least delayed. The calculations show the experimentally known individualization of a vortex, after which the solution grows without reaching a steady limit; a processwhich is likely to be related to dynamic stall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prandtl, L.: Uber Flssigkeitsbewegung bei sehr kleiner Reibung, Proc. 3rd Int. Math. Congr. Heidelberg (1904) 484–491.

    Google Scholar 

  2. Goldstein, S.: On laminar boundary-layer flow near a position of separation, Quart. J. Mech. Appl. Math. 1 (1948) 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dommelen, L.L. van: Unsteady boundary layer separation, Ph.D. thesis, Cornell University, New York (1981).

    Google Scholar 

  4. Sychev, V.V.: Concerning laminar separation, Mekh. Zhid. i Gaza 3 (1972) 47–59 (in Russian), Fluid Dyn. 7, 407–417 (in English).

    Google Scholar 

  5. Smith, F.T.: The laminar separation of an incompressible fluid streaming past a smooth surface, Proc. Roy. Soc. London A. 356 (1977) 443–463.

    Article  ADS  MATH  Google Scholar 

  6. Smith, F.T.: Laminar flow of an incompressible flow past a bluff body: the separation, reattachment, eddy properties and drag, J. Fluid Mech. 92 (1979) 171–205.

    Article  ADS  MATH  Google Scholar 

  7. Brodetsky, S.: Discontinuous fluid motion past circular and elliptic cylinders, Proc. Roy. Soc. London A.102 (1923) 542–553.

    Article  ADS  MATH  Google Scholar 

  8. Stewartson, K., Smith, F.T. & Kaups, K.: Marginal separation, Stud. Appl. Math. 67 (1982) 45–61.

    MathSciNet  MATH  Google Scholar 

  9. Dijkstra, D.: Separating, incompressible, laminar boundary-layer flow over a smooth step of small height, Proc. 6th Int. Conf. Num. Meth. Fluid Dyn., Lecture notes in physics 90, Springer-Verlag, New-York (1979) 169–176.

    Google Scholar 

  10. Veldman, A.E.P. & Dijkstra, D.: A fast method to solve incompressible boundary-layer interaction problems, Proc. 7th Int. Conf. Num. Meth. Fluid Dyn., Lecture notes in physics 141, Springer-Verlag, New-York (1980) 411–416.

    Google Scholar 

  11. Smith, F.T.: Concerning dynamic stall, Aer. Quart. 33 (1982) 331–351.

    Google Scholar 

  12. Veldman, A.E.P.: A numerical method for the calculation of laminar, incompressible boundary layers with strong viscous-inviscid interaction, NLR TR 79023 U (1979).

    Google Scholar 

  13. Veldman, A.E.P.: New, quasi-simultaneous method to calculate interacting boundary layers, AIAA J. 19 (1981) 79–85.

    Article  ADS  MATH  Google Scholar 

  14. Carter, J.E. & Wornom, S.F.: Solutions for incompressible separated boundary layers including viscous-inviscid interaction, NASA SP 347 (1975) 125–150.

    ADS  Google Scholar 

  15. Edwards, D.E. & Carter, J.E.: A quasi-simultaneous finite difference approach for strongly interacting flow, Proc. 3rd symposium on numerical and physical aspects of aerodynamic flows, Long Beach, California, Januari 21–24 (1985).

    Google Scholar 

  16. Rothmayer, A.P. & Davis, R.T.: Massive separation and dynamic stall on a cusped trailing-edge airfoil, Proc. 3rd symposium on numerical and physical aspects of aerodynamic flows, Long Beach, Januari 21–24 (1985) .

    Google Scholar 

  17. Henkes, R.A.W.M.: Computation of the separation of steady and unsteady, incompressible, laminar boundary layers, Report LR-483, Delft University of Technology, Department of Aerospace Engineering (1985).

    Google Scholar 

  18. Herwig, H.: Die Anwendung der Methode der angepassten asymptotischen Entwicklungen auf laminare, zweidimensionale Strmungen mit endlichen Ablsegebieten, Dissertation, Ruhr-University, Bochum (1981).

    Google Scholar 

  19. Cowley, S.J.: Computer extension and analytic continuation of Blasius’ expansion for impulsive flow past a circular cylinder, J. Fluid Mech. 135 (1983) 389–405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ingham, D.B.: Unsteady separation, J. Comp. Physics 53 (1984) 90–99.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Blasius, H.: Grenzschichten in Flssigkeiten mit kleiner Reibung, Z. Math. Phys. 56 (1908) 1–37.

    Google Scholar 

  22. Dennis, S.C.R. & Staniforth, A.N.: A numerical method for calculating the initial flow past a cylinder in a viscous fluid, Proc. 2nd Int. Conf. Num. Meth. Fluid Dyn., Lecture notes in physics 8, Springer-Verlag, New-York (1971) 343–349.

    Chapter  Google Scholar 

  23. Ta Phuoc Loc & Bouard, R.: Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a comparison with experimental visualization and measurements, J. Fluid Mech. 160 (1985) 93–117.

    Article  ADS  Google Scholar 

  24. Bouard, R. & Coutanceau, M.: The early stage of development e the wake behind an impulsively started cylinder for 40 < Re < 10 , J. Fluid Mech. 101 (1980) 583–607.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Henkes, R.A.W.M., Veldman, A.E.P. (1987). Breakdown of Steady and Unsteady Interacting Boundary Layers. In: Smith, F.T., Brown, S.N. (eds) Boundary-Layer Separation. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83000-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83000-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83002-0

  • Online ISBN: 978-3-642-83000-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics