Skip to main content

Turbulence Modelling Using Coherent Structures in Wakes, Plane Mixing Layers and Wall Turbulence

  • Conference paper
Perspectives in Turbulence Studies

Summary

Coherent structures in turbulent flows are reviewed mainly from work carried out at the University of Melbourne and possible uses of the concept for predicting the evolution of turbulence are discussed. Emphasis is placed on the so-called “coherent substructures” in plane mixing layers and wall turbulence. The use of turbulence spectra for making inferences concerning the properties of the coherent substructures is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hussain A.K.M.F. Coherent structures - Reality and Myth. Report FM-17. Department of Mechanical Engineering. University of Houston Central Campus. Houston,Texas. July 1982. Revised: April 1983.

    Google Scholar 

  2. Brown. G. & Roshko A. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. (1974) 64: 775–816.

    Article  ADS  Google Scholar 

  3. Lumley. J.L. Coherent structures in turbulence. In Transition and Turbulence (ed. R. Meyer) N.Y. Academic Press (1981); 215–242.

    Google Scholar 

  4. Brown G. & Roshko A. Symposium on Turbulent Shear Flows. London; Imperial College (1971) p. 23. 1

    Google Scholar 

  5. Roshko A. The plane mixing layer; flow visualization results and three dimensional effects. In Proceedings, An international conference on the role of coherent structures in modelling turbulence and mixing. Madrid: University Politecnica 1981.

    Google Scholar 

  6. Cantwell B.J. Organized motions in turbulent flow. Ann. Rev. Fluid Mech. (1981) 13. 457–515

    Article  ADS  Google Scholar 

  7. Browand. E.K & Troutt. T.R. A note on spanwise structure in the two-dimensional mixing layer. J. Fluid Mech. (1980) 917: 771–781.

    Article  ADS  Google Scholar 

  8. Bradshaw P. The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. (1966) 26: 225–236.

    Article  ADS  Google Scholar 

  9. Hussain A.K.M.F. Coherent structures and studies of perturbed and unperturbed jets, in Proceedings, An international conference on the role of coherent structures in modelling turbulence and mixing Madrid; University Politechnica (1981)

    Google Scholar 

  10. Perry. A.E. & Steiner T.R. Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation process. J. Fluid mech. (1987). In the press.

    Google Scholar 

  11. Steiner T.R. & Perry A.E. Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures. J. Fluid Mech. (1987) In the press.

    Google Scholar 

  12. Kline S.J., Reynolds W.C., Schraub F.A., Rundstadler P.W. The structure of turbulent boundary layers. J. Fluid Mech. (1967) 30; 741–773.

    Article  ADS  Google Scholar 

  13. Kim J. & Moin J. “The structure of the vorticity field in turbulent channel flow” Part 2. Study of ensemble averaged fields. J. Fluid Mech. (1985), 162; 339–363.

    Article  ADS  Google Scholar 

  14. Kim J. Evolution of a vortical structure associated with the bursting event in a channel flow. Fifth Symposium on Turbulent Shear Flow. Cornell University. August 7–9 (1985) 9. 23.

    Google Scholar 

  15. Lu S.S. & Willmarth. W W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. (1973) 60; 481.

    Article  ADS  Google Scholar 

  16. Cantwell B. & Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular sylinder. J. Fluid Mech. (1983) 136; 321–374.

    Article  ADS  Google Scholar 

  17. Head M.R. & Bandyopadhyay P. New aspects of turbulent boundary layer structure. J. Fluid Mech. (1981) 107, 297–337.

    Article  ADS  Google Scholar 

  18. Perry. A.E. Lim. T.T. & Teh E.W. A visual study of turbulent spots J. Fluid Mech. (1981) 104; 387–405.

    Article  ADS  Google Scholar 

  19. Breidenthal R. Structure in turbulent mixing layers and wakes using chemical reaction. J. Fluid Mech. (1981) 109, 1–24.

    Article  ADS  Google Scholar 

  20. Burgers J. M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. (1948) 1; 197–199.

    Google Scholar 

  21. Perry A.E. & Tan D.K.M. Simple three-dimensional vortex motions in coflowing jets and wakes. J. Fluid Mech. (1984) 141; 197–231.

    Article  ADS  Google Scholar 

  22. Bracewell R.N. The Fourier transform and its application. McGraw-Hill(l978).

    Google Scholar 

  23. Perry A.E. & Chong M.S. On the mechanism of wall turbulence. J. Fluid Mech. (1982) 119; 173–217.

    Article  MATH  ADS  Google Scholar 

  24. Perry A.E., Henbest. S & Chong M.S. A theoretical and experimental study of wall turbulence. J. Fluid Mech. (1986) 165: 163–199.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Perry A.E. Chong M.S. & Lim T.T. Vortices in turbulence. In Vortex Motion. Proceedings of a colloquium held at Goettingen on the occasion of the 75th Anniversary of the Aerodynamische Versuchsanstalt in November 1982. Eds. H.G.Hornung and E.A. Muller. Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden.

    Google Scholar 

  26. Jimenez J., Cogollos M. & Bernal L. A perspective view of the plane mixing layer. J. Fluid Mech. (1985) 152; 125–143.

    Article  ADS  Google Scholar 

  27. Ho C.M. & Huang L.S. Subharmonics and vortex merging in mixing layers. J. Fluid Mech. (1982) 119; 443.

    Article  ADS  Google Scholar 

  28. Lighthill M.J. Attachment and separation in three-dimensional flow. In Laminar Boundary Layers (ed. L. Rosenhead). Oxford Univ. Press, Oxford, U.K. (1963); 72–82

    Google Scholar 

  29. Lundgren T.S. Strained spiral vortex model for turbulent fine structure. Phys. Fluids (1982) 25; 2193–2203.

    Article  MATH  ADS  Google Scholar 

  30. Townsend A.A. The Structure of Turbulent Shear Flows. (1986) Cambridge University Press.

    Google Scholar 

  31. Hama F.R. Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Naval Arch. Mar. Engrs. (1954) 62; 333–358.

    Google Scholar 

  32. Coles D. The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1; 191–226.

    Article  ADS  MathSciNet  Google Scholar 

  33. Townsend A.A. Equilibrium layers and wall turbulence. J. Fluid Mech. (1961) 11; 97–120.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Perry, A.E. (1987). Turbulence Modelling Using Coherent Structures in Wakes, Plane Mixing Layers and Wall Turbulence. In: Meier, H.U., Bradshaw, P. (eds) Perspectives in Turbulence Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82994-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82994-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82996-3

  • Online ISBN: 978-3-642-82994-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics