Skip to main content

Monitoring Polyamines in Plant Tissues by High Performance Liquid Chromatography

  • Chapter

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 5))

Abstract

The commonly studied amines are the diamines, diaminopropane, cadaverine and putrescine, the triamine, spermidine and the tetraamine, spermine. Although the physiological role of polyamines remains unclear, they are considered important in the growth of plants, animals, and microorganisms (Bachrach 1973). The function and biochemistry of polyamines, and other naturally occurring amines in plants are discussed in several recent reviews (Smith 1980; Galston 1983; Slocum et al. 1984; Smith 1985). In plants they have been associated with many cell processes, including cell division and differentiation, membrane stability, pH and osmotic stress, retardation of senescence, and the synthesis of nucleic acids and proteins. In addition, aliphatic polyamines, as well as aromatic amines, have been found as constituents of alkaloids and conjugates of cinnamic acids (see reviews by Guggisberg and Hesse 1983; Smith et al. 1983; Slocum et al. 1984; Smith 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlakha RC, Villanueva VR (1980) Automated ion-exchange chromatographic analysis of usual and unusual natural polyamines. J Chromatogr 187: 442–446

    Article  CAS  Google Scholar 

  • Aleksijevic A, Grove J, Schuber F (1979) Studies on polyamine biosynthesis in Euglena gracilis. Biochim Biophys Acta 565: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Anderson JN, Martin RO (1973) Identification of cadaverine in Pisum sativum. Phytochemistry 12: 443–446

    Article  CAS  Google Scholar 

  • Bachrach U (1973) Function of naturally occuring polyamines. Academic Press, New York

    Google Scholar 

  • Bagni N (1970) Metabolic changes of polyamines during the germination of Phaseolus vulgaris. New Phytol 69: 159–164

    Article  CAS  Google Scholar 

  • Benson JR, Hare PE (1975) o-Phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. PNAS 72: 619–622

    Article  PubMed  CAS  Google Scholar 

  • Birecka H, DiNolfo TE, Martin WB, Frohlich MW (1984) Polyamines and leaf senescence in pyrrolizidine alkaloid-bearing Heliotropium plants. Phytochemistry 23: 991–997

    Article  CAS  Google Scholar 

  • Bontemps J, Etienne A, Kadri M, van Cutsem J-L, Dandrifosse G, Forget P-Ph (1984a) High-speed analysis of dansyl derivatives of polyamines. Chromatographia 18: 525–527

    Article  PubMed  CAS  Google Scholar 

  • Bontemps J, Laschet J, Dandrifosse G, van Cutsem J-L, Forget P-Ph (1984b) Analysis of dansyl derivatives of di-and polyamines in mouse brain, human serum and duodenal biopsy specimens by high-performance liquid chromatography on a standard reversed-phase column J Chromatogr 311: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Brown ND, Strickler MP, Whaun JM (1982) Femtomolar ion-pair high-performance liquid chromatographic method for determining Dns-polyamine derivatives of red blood cell extracts utilizing an automated polyamine analyzer. J Chromatogr 245: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Brown ND, Sweet RB, Kintzios JA, Cox HD, Doctor BP (1979) Determination of 5-dimethylaminonaphthalene-1-sulfonyl derivatives of urinary polyamines by ion-pair high-performance liquid chromatography. J Chromatogr 164: 35–40

    Article  PubMed  CAS  Google Scholar 

  • Brossat B, Straczek J, Belleville F, Nabet P, Metz R (1983) Determination of free and total polyamines in human serum and urine by ion-pairing high-performance liquid chromatography using a radial compression module. Application to blood polyamine determination in cancer patients treated or not treated with an ornithine decarboxylase inhibitor. J Chromatogr 277: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Cohen SS, Balint R, Sindhu RK (1981) The synthesis of polyamines from methionine in intact and disrupted leaf protoplasts of virus-infected chinese cabbage. Plant Physiol 68: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Cooke NHC, Olsen K (1979) Chemically bonded alkyl reversed-phase columns: properties and use. Am Lab 11: 45–60

    CAS  Google Scholar 

  • Cooke NHC, Olsen K (1980) Some modern concepts in reversed-phase liquid chromatog- raphy on chemically bonded alkyl stationary phases. J Chromatogr Sci 18: 83–94

    Google Scholar 

  • Creveling CR, Daly JW (1971) The use of dansyl derivatives for the identification and quantitation of amines. In: Tabor H, Tabor CW (eds) Methods in enzymology, vol XVIIB. Academic Press, New York London, pp 844–850

    Google Scholar 

  • Davis TP (1979) High-performance liquid chromatographic analysis of biogenic amines in biological materials as o-phthalaldehyde derivatives. J Chromatogr 162: 293–310

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69: 701–706

    Article  PubMed  CAS  Google Scholar 

  • Fracassini DS, Bagni N, Cionini PG, Bennici A (1980) Polyamines and nucleic acids during the first cell cycle of Helianthus tuberosus tissue after the dormancy break. Planta 148: 332–337

    Article  CAS  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33: 382–388

    Article  CAS  Google Scholar 

  • Goren R, Palavan N, Flores H, Galston AW (1982) Changes in polyamine titer in etiolated pea seedlings following red light treatment. Plant Cell Physiol 23: 19–26

    CAS  Google Scholar 

  • Greenberg ML, Cohen SS (1985) Dicyclohexylamine-induced shift of biosynthesis from spermidine to spermine in plant protoplasts. Plant Physiol 78: 568–575

    Article  PubMed  CAS  Google Scholar 

  • Grettie DP, Bartos D, Bartos F, Smith RG, Campbell RA (1978) Purification of radiolabeled polyamines and isolation of polyamines from serum by silica gel chromatography. In: Campbell RA, Morris DR, Bartos D, Daves GD, Bartos F (eds) Adv polyamine res, vol 2. Raven Press, New York, pp 13–21

    Google Scholar 

  • Guggisberg A, Hesse M (1983) Putrescine, spermidine, spermine and related polyamine alkaloids. Alkaloids 22: 85–188

    CAS  Google Scholar 

  • Hayman AR, Gray DO, Evans SV (1985) New high-performance liquid chromatography system for the separation of biogenic amines as their Dns derivatives. J Chromatogr 325: 462–466

    Article  PubMed  CAS  Google Scholar 

  • Heby O, Andersson G (1978) Simplified micro-method for the quantitative analysis of putrescine, spermidine and spermine in urine. J Chromatogr 145: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Kabra PM, Lee HK, Lubich WP, Marton U (1986) Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr 380: 19–32

    Article  PubMed  CAS  Google Scholar 

  • Kneifel H, Schuber F, Aleksijevic A, Grove J (1978) Occurrence of norspermine in Euglena gracilis. Biochem Biophys Res Comm 85: 42–46

    Article  PubMed  CAS  Google Scholar 

  • Madsen JP, Bush LP, Gay SL (1985) Effects of curing on polyamine content of leaves of Nicotiana tabacum L. genotypes with different alkaloid level. J Agric Food Chem 33: 1182–1185

    Article  CAS  Google Scholar 

  • Perdrizet E, Prevost J (1981) Aliphatic and aromatic amines during development of Nicotiana tabacum. Phytochemistry 20: 2131–2134

    Article  CAS  Google Scholar 

  • Redmond JW, Tseng A (1979) High-pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. J Chromatogr 170: 479–481

    Article  CAS  Google Scholar 

  • Roberts DR, Walker MA, Thompson JE, Dumbroff EB (1984) The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers. Plant Cell Physiol 25: 315–322

    CAS  Google Scholar 

  • Roberts DR, Walker MA, Dumbroff EB (1985) Mass spectral determination of benzamide derivatives of polyamines separated by HPLC. Phytochemistry 24: 1089–1090

    Article  CAS  Google Scholar 

  • Russell DH, Ellingson JD, Davis TP (1983) Analysis of polyamines and acetyl derivatives by a single automated amino acid analyzer technique. J Chromatogr 273: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Saeki Y, Uehara N, Shirakawa S (1978) Sensitive fluorimetric method for the determination of putrescine, spermidine and spermine by high-performance liquid chromatography and its application to human blood. J Chromatogr 145: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (1971) Identification and quantitation of amines by thin-layer chromatography. J Chromatogr 63: 97–112

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (1983a) Liquid chromatographic methods for assaying polyamines using prechromatographic derivatization. In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 94. Academic Press, New York London, pp 10–25

    Google Scholar 

  • Seiler N (1983b) Ion-pair partition chromatographic separations of polyamines and their monoacetyl derivatives. In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 94. Academic Press, New York London, pp 25–29

    Google Scholar 

  • Seiler N, Knödgen B (1980) High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr 221: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Knödgen B (1985) Determination of polyamines and related compounds by reversed-phase high-performance liquid chromatography: improved separation systems. J Chromatogr 339: 45–57

    Article  CAS  Google Scholar 

  • Seiler N, Knödgen B, Eisenbeiss F (1978) Determination of di-and polyamines by high-performance liquid chromatographic separation of their 5-dimethylaminonaphthalene-1-sulfonyl derivatives. J Chromatogr 145: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Wiechmann M (1967) Mikrobestimmung von Spermin und Spermidin als dimethylamino-naphthalin-5-sulfonaure-Derivate. Hoppe-Seyler’s Z Physiol Chem 348: 1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Wiechmann M (1970) TLC analysis of amines as their dans-derivatives. In: Niederwieser A, Pataki G (eds) Progress in thin-layer chromatography and related methods, vol 1. Ann Arbor-Humphrey Science, Ann Arbor, Michigan, pp 95–144

    Google Scholar 

  • Simons SS, Johnson DF (1976) The structure of the fluorescent adduct formed in the reac- tion of o-phthalaldehyde and thiols with amines. J Am Chem Soc 98: 7098–7099

    Article  CAS  Google Scholar 

  • Skaaden T, Greibrokk T (1982) Determination of polyamines by pre-column derivatization with o-phthalaldehyde and ethanethiol in combination with reversed-phase high-performance liquid chromatography. J Chromatogr 247: 111–122

    Article  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235: 283–303

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Davies PJ (1985) Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (1975) Review: Recent advances in the biochemistry of plant amines. Phytochemistry 14: 865–890

    Article  CAS  Google Scholar 

  • Smith TA (1980) Plant amines. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, vol 8. Springer, Berlin Heidelberg New York, pp 433–460

    Google Scholar 

  • Smith TA (1985) Polyamines ARPP 36: 117–143

    CAS  Google Scholar 

  • Smith TA, Best GR (1977) Polyamines in barley seedlings. Phytochemistry 16: 841–843

    Article  CAS  Google Scholar 

  • Smith TA, Negrel J, Bird CR (1983) The cinnamic acid amides of the di-and polyamines In: Bachrach U, Kaye A, Chayen R (eds) Adv in polyamine research, vol 4. Raven Press, New York, pp 347–371

    Google Scholar 

  • Smith TA, Wilshire (1975) Distribution of cadaverine and other amines in higher plants. Phytochemistry 14: 2341–2346

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1983) Quantitative determination of naturally occurring aliphatic diamines and polyamines by an automated liquid chromatography procedure. In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 94. Academic Press, New York London, pp 29–36

    Google Scholar 

  • Villanueva VR, Adlakha RC (1978) Automated analysis of common basic amino acids, mono-, di-, and polyamines, phenolicamines, and indoleamines in crude biological samples. Anal Biochem 91: 264–275

    Article  PubMed  CAS  Google Scholar 

  • Villanueva VR, Adlakha RC, Cantera-Soler AM (1977) Détermination rapide de polyamines et de quelques mono-et diamines dans des extraits végétaux. J Chromatogr 139: 381–385

    Article  CAS  Google Scholar 

  • Villanueva VR, Adlakha RC, Cantera-Soler AM (1978) Changes in polyamine concentration during seed germination. Phytochemistry 17: 1245–1249

    Article  CAS  Google Scholar 

  • Villanueva VR, Mardon M, LeGoff MTh (1986a) A new high performance chromatographic method for polyamine analysis in Picea needles, without previous extract purification. Intern J Environ Anal Chem 25: 115–125

    Article  CAS  Google Scholar 

  • Villanueva VR, Mardon M, LeGoff MTh ( 1986 b) Comparison of amino-compounds contained in the needles of healthy and damaged Picea trees in air polluted areas. Preliminary results. Intern J Environ Anal Chem 25: 127–134

    Article  CAS  Google Scholar 

  • Villanueva VR, Simola LK, Mardon M (1985) Polyamines in turions and young plants of Hydrocharis morsus-ranae and Utricularia intermedia. Phytochemistry 24: 171–172

    Article  CAS  Google Scholar 

  • Wagner J, Danzin C, Mamont P (1982) Reversed-phase ion-pair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J Chromatogr 227: 349–368

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, M.A., Davies, P.J. (1987). Monitoring Polyamines in Plant Tissues by High Performance Liquid Chromatography. In: Linskens, HF., Jackson, J.F. (eds) High Performance Liquid Chromatography in Plant Sciences. Modern Methods of Plant Analysis, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82951-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82951-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82953-6

  • Online ISBN: 978-3-642-82951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics