The Thermal Conductivity and Specific Heat of Glasses

  • C. C. Yu
  • J. J. Freeman
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 68)


It is well known that in a wide variety of amorphous materials an empirical correlation exists between the plateau in the thermal conductivity κ and the bump in C/T3 where C is the specific heat [1,2]. Both occur at roughly the same temperature for a given material and this temperature lies between 3K and 10K. Recent theoretical efforts to explain the thermal conductivity have included fractons [3] and phonon localization [4,5]. It is not obvious, however, in the first case how one can map a glass onto a self-similar percolating network, or in the second case how one can explain the rise in κ above the plateau.


Thermal Conductivity Local Mode Empirical Correlation Phonon Scattering Resonant Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. P. Jones, J. Jackie and W. A. Phillips, in Phonon Scattering in Condensed Matter, ed. by H. J. Maris (Plenum, New York, 1980) p. 49, and papers cited therein.CrossRefGoogle Scholar
  2. 2.
    D. A. Ackerman, D. Moy, R. C. Potter, A. C. Anderson and W. N. Lawless, Phys. Rev. B23, 3886 (1981) and papers cited therein.ADSGoogle Scholar
  3. 3.
    R. Orbach, J. Stat. Phys. 36, 735 (1984).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    J. E. Graebner, B. Golding and L. C. Allen, unpublished.Google Scholar
  5. 5.
    E. Akkermans and R. Maynard, Phys. Rev. B32, 7850 (1985).ADSGoogle Scholar
  6. 6.
    J. J. Freeman and A. C. Anderson, submitted to Phys. Rev. B.Google Scholar
  7. 7.
    A general review may be found in Amorphous Solids, ed. by W. A. Phillips (Springer, Berlin, 1981).Google Scholar
  8. 8.
    J. J. Freeman and A. C. Anderson, this conference.Google Scholar
  9. 9.
    J. C. Lasjaunias, A. Ravex and M. Vandorpe, Solid State Comm. 17, 1045 (1975).CrossRefADSGoogle Scholar
  10. 10.
    R. C. Zeller and R. O. Pohl, Phys. Rev. B4, (1971).Google Scholar
  11. 11.
    A. A. Antoriou and J. A. Morrison, J. Appl. Phys. 36, 1873 (1965).CrossRefADSGoogle Scholar
  12. 12.
    R. B. Stephens, Phys. Rev. B8, 2896 (1973).ADSGoogle Scholar
  13. 13.
    C. L. Choy, R. G. Hunt and G. L. Salinger, J. Chem. Phys. 52, 3629 (1970).CrossRefADSGoogle Scholar
  14. 14.
    T. L. Smith, Ph.D. Thesis (University of Illinois, 1975), unpublished.Google Scholar
  15. 15.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, Thermophysical Properties of Matter, Vol. 2 (Plenum, New York, 1970), p. 193.Google Scholar
  16. 16.
    K. Guckelsberger and J. C. Lasjaunias, Compt. Rend. 270, B1427 (1970).Google Scholar
  17. 17.
    J. J. Freeman, Ph.D. Thesis (University of Leeds, U.K., 1985), unpublished.Google Scholar
  18. 18.
    R. B. Stephens, G. S. Cieloszyk and G. L. Salinger, Phys. Lett. 38A, 215 (1972).ADSGoogle Scholar
  19. 19.
    L. Piche, R. Maynard, S. Hunklinger and J. Jackie, Phys. Rev. Lett. 32, 1426 (1974).CrossRefADSGoogle Scholar
  20. 20.
    J.-Y. Duquesne and G. Bellessa, J. Phys. (Paris) 40, L-193 (1979).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • C. C. Yu
    • 1
  • J. J. Freeman
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations