Skip to main content

Abstract

At the very heart of metal forming analysis is the theory of plasticity. Initially proposed last century by Tresca and Mohr, it reached a stabilized form in the twenties as a result of work done by von Mises and Hencky. In the early sixties it was completed for infinitesimal analysis [2.1]. A brief description of this theory follows in section 2.2. The theory for large deformations is still being developed today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cp :

specific heat

E:

Young’s modulus

fi :

surface traction

Fx,Fy,FZ :

forces

h:

heat transfer coefficient or height of element

H:

instantaneous height

J1,J2’J3 :

deviatoric stress invariants

k:

shear flow stress

kijkl :

elasticity constants

L:

length of bar element

m:

friction factor 0 ≤ m ≤ 1

nj :

normal unit vector

N1 ,N2 :

shape function or interpolations function

p:

hydrostatic pressure or applied pressure

pu,pl :

applied pressure in upper and lower dies

P:

total load

qi :

body loads or heat flux

t:

time

Ti :

surface loads or temperatures

ui,j :

displacement

dui,j :

displacement increments

vo :

axial velocity of die

Δv :

velocity discontinuity

\({v_{{t_1}}},{v_{{t_2}}}\) :

tangential velocities

α:

thermal expansion coefficient (or angle)

\(\bar \varepsilon\) :

effective strain

\(\dot \bar \varepsilon\) :

effective strain rate

εxyzxyzxyz :

generalized state of strain

εij.:

infinitesimal deformation

*ij :

admissable strain increment tensor

μ:

friction factor 0 ≤ μ ≤ 0.577

ρ:

density

\(\bar \sigma\) :

equivalent or effective stress

σxyzxyxzyz :

generalized state of stress

σzrt :

axisymmetric state of stress σz axial stress σr radial stress σt hoop stress

σf :

flow stress in a uniaxial test

σm :

average stress

σi = σl23 :

principal stresses (σ1 > σ12 > σ3)

\({\sigma _i}^\prime = {\sigma _1}^\prime ,{\sigma _2}^\prime ,{\sigma _3}^\prime \left( {or{s_1},{s_2},{s_3}} \right)\) :

deviatoric stresses

σ *ij :

admissible stress tensor

σy :

yield stress

τ:

friction shear stress or tangential shear stress

τmax :

maximum shear stress

τy :

shear yield stress

References Chapter 2

  1. Naghdi P.M., Stress-strain Relations in Plasticity and Thermoplasticity, in Plasticity, Proceedings 2nd Symposium on Naval Structural Mechanics, eds. E.H. Lee, P.S. Symonds, Pergamon (1960).

    Google Scholar 

  2. Hill R., The Mathematical Theory of Plasticity, Oxford Clarendon Press (1950).

    Google Scholar 

  3. Boër C.R., Schröder G., Process Modelling of Hot-Die Forging-Application to a Nickel Base Alloy, Annals CIRP, 31 /1. (1982) 137–140.

    Article  Google Scholar 

  4. Boër C.R., Rydstad H., Schröder G., Choosing Optimal Forging Conditions in Isothermal and Hot-Die Forging, J. Applied Metalworking, 3, No. 4 (January 1985) 421–431.

    Article  Google Scholar 

  5. Shah S.N., Monti G.J., Forging Simulation and Properties Achievable for Large Waspaloy Forgings for Land-based Gas Turbines, ASME Paper Nr. 81-GT-84 for Meet. Mar. 9–12 (1981) 1–8.

    Google Scholar 

  6. Kanetake N., Tozawa Y., Kato T., Ishikawa T., Computer aided Experimental Techniques in a Forming Laboratory, Annals of the CIRP, 32 /1 (1983) 219–222.

    Article  Google Scholar 

  7. Knight W.A., Poli C., Product Design for the Economical Use of Forging, Annals of the CIRP, 30 /1 (1981) 337–342.

    Article  Google Scholar 

  8. Lahoti G.D., Subramanian T.L., Altan T., Computer-aided Prediction of Metal Flow, Temperatures and Forming Load in Selected Metal-Forming Processes, ASME AMID, 28, Appl. of Numer. Methods to Form. Processes, ASME Winter Annu. Meet., San Francisco, Calif., Dec. 10–15 (1978) 183–195.

    Google Scholar 

  9. Altan T., Lahoti G.D., Nagpal V., Application of Process Modelling in Massive Forming Processes, Process Modelling Tools ASM Materials & Process Congress Proceedings (1980) 77–99.

    Google Scholar 

  10. Shahaf M., Bercovier M., Guez D., Blades I., Interactive Simulation of a Forging Process for Blades, Numerical Methods in Industrial Forming Processes (1982) 343–350.

    Google Scholar 

  11. Nagpal V., General Kinematically Admissible Velocity Fields for some Axisymmetric and Metal Forming Problems, Transactions of the ASME, Journal of Engineering for Industry (November 1974) 1197–1201.

    Google Scholar 

  12. Bishop J.F.W., An Approximate Method for Determining the Temperatures Reached in Steady-State Motion Problems of Plane Plastic Strain, Quarterly J. Mechanics and Appl. Math., 9 (1956) 236–246.

    Article  Google Scholar 

  13. Kobayashi S., Metalworking Process Modelling and the Finite Element Method, Proceedings NAMRC (1981) 16–21.

    Google Scholar 

  14. Mouton J.-P., Combined numerical and Algebraic Computer Processing Applied to Plasticity Problems, Annals of the CIRP, 28 /1 (1979) 131–134.

    Google Scholar 

  15. Oudin J., Ravalard Y., A General Method for Computing Plane Strain Plastic Flows, Proceedings 20th International Machine Tool Design and Research Conference (1979) 211–216.

    Google Scholar 

  16. Kiuchi M., Murata Y., Simulation of Contact Pressure Distribution on Tool Surface by UBET, Proceedings 21st International Machine Tool Design and Research Conference (1980) 13–20.

    Google Scholar 

  17. Venter R.D., Hewitt R.L., Johnson W., An Engineering Approach to the Matrix Operator Technique for Slip Line Field Construction, Proceedings NAMRC (1978) 111–118.

    Google Scholar 

  18. Boër C.R., Avitzur B., Schneider W.R., Eliasson B., An Upper Bound Approach for the Direct Drawing of Square Rod from Round Bar, Proceedings 20th MTDR Conference (1979) 149–156.

    Google Scholar 

  19. Clough R.W., The Finite Element in Plane Stress Analysis, Proc. 2nd A.S.C.E. Conf. on Electronic Computation, Pittsburg, PA. (1960).

    Google Scholar 

  20. Lee C.H., Kobayashi S., Elastoplastic Analysis of Plane Strain and Axisymmetric Flat Punch Indentation by the Finite Element Method, Int. J. Mech. Sciences, 12, 4 (1970) 349–370.

    Article  Google Scholar 

  21. Alexander J.M., Gunasekera J.S., On the Geometrically Similar Expansion of a Hole in a Thin Infinite Plate, Proc. R. Soc. A, 326, 1566 (1972) 361–373.

    Article  Google Scholar 

  22. Zienkiewicz O.C., The Finite Element Method, McGraw-Hill, U.K. (1977).

    Google Scholar 

  23. Bathe K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall (1982).

    Google Scholar 

  24. Irons B., Ahmad S., Techniques of Finite Elements, Ellis Horwood (1980).

    Google Scholar 

  25. McMeeking R.M. and Rice J.R., Finite Element Formulations for Problems of Large Elastic-Plastic Deformation, Int. J. Solids and Structures, il (1975) 601–616.

    Google Scholar 

  26. Hill R., Some Basic Principles in the Mechanics of Solids without a Natural Time, J. of the Mechanics and Physics of Solids, 7 (1959) 209.

    Article  Google Scholar 

  27. Pinsky P.M., A Numerical Formulation for the Finite Deformation Problem of Solids with Rate-Independent Constitutive Equations, Report No. UCB/SESM-81/07, University of California, Berkeley (1981).

    Google Scholar 

  28. Lee E.H., Some Comments on Elastic-Plastic Analysis, Int. J. Solids and Structures, 17 (1981) 859–872.

    Article  Google Scholar 

  29. Nagtegaal J.C., deJong E.J., Some Computational Aspects of Elastic-Plastic Large Strains Analysis, Int. J. Num. Meth. Eng., 17 (1981) 15–41.

    Article  Google Scholar 

  30. Lubarda V.A., Lee E.H., A Correct Definition of Elastic and Plastic Deformation and Its Computational Significance, J. Appl. Mechanics, 48 (1981) 35–40.

    Article  Google Scholar 

  31. Key S.W., Krieg R.D., Bathe K.J., On Application of the Finite Element Method to Metal Forming Processes–Part I, Comp. Meth. Appl. Mech. Eng., 17 /18 (1979) 597–608.

    Article  Google Scholar 

  32. Hughes T.J.R., Pister K.S., Consistent Linearization in Mechanics of Solids and Structures, Computers and Structures, 8 (1978) 391–397.

    Article  Google Scholar 

  33. Krieg R.D., Krieg D.B., Accuracies of Numerical Solution Methods for the Elastic Perfectly-Plastic Model, J. of Pressure Vessel Tech., 99 (1977) 510–515.

    Article  Google Scholar 

  34. Nagtegaal J.C., On the Implementation of Inelastic Constitutive Equations with Special Reference to Large Deformation Problems, Comp. Meth. Appl. Mech. Eng., 33 (1982) 469–484.

    Article  Google Scholar 

  35. Nagtegaal J.C., Veldpaus F.E., On the Implementation of Finite Strain Plasticity Equations in a Numerical Model, in Numerical Analysis of Forming Processes, John Wiley & Sons (1984).

    Google Scholar 

  36. Simo J.C., Ortiz M., A Unified Approach to Finite Deformation Plasticity based on the Use of Hyperelastic Constitutive Equations, Report 10, UCB/SESM-84/13, University of California, Berkeley (1984).

    Google Scholar 

  37. Simo J.C., On the Computational Significance of the Intermediate Configuration and Hyperelastic Stress Relations in Finite Deformation Elastoplasticity, Workshop on Inelastic Deformation and Failure Modes, Northwestern University (1984).

    Google Scholar 

  38. ] Oh S.I., Private communication.

    Google Scholar 

  39. Lee C.H., Kobayashi S., New Solutions to Rigid-plastic Deformation Problems Using a Matrix Method, J. Eng. Ind., 95 (1973) 865.

    Article  Google Scholar 

  40. Kobayashi S., Rigid-Plastic Finite Element Analysis of Axisymmetric Metal Forming Processes, Numerical Modelling of Manufacturing Processes, ASME, PVP-PB-025 (1977) 49–68.

    Google Scholar 

  41. Zienkiewicz O.C., Godbole P.N., Flow of Plastic and Viscoplastic Solids with Special Reference to Extrusion and Forming Processes, Int. J. Num. Meth. Engr., 8 (1974) 3.

    Google Scholar 

  42. Zienkiewicz O.C., Jain P.C.; Onate E.; Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions, Int. J. Solids and Structures, 14 (1978) 15.

    Article  Google Scholar 

  43. Chen C.C., Oh S.I., Kobayashi S., Ductile Fracture in Axisymmetric Extrusion and Drawing - Part I, J. of Eng. for Industry, 101 (1979) 23.

    Article  Google Scholar 

  44. Shimazeki Y., Thompson E.G., Elasto-Viscoplastic Flow with Special Attention to Boundary Conditions, Int. J. Num. Meth. Engrg., 17 (1981) 97.

    Article  Google Scholar 

  45. Oh S.I., Rebelo N., Kobayashi S., Finite Element Formulation for the Analysis of Plastic Deformation of Rate-Sensitive Materials in Metal Forming, IUTAM Symposium on Metal Forming Plasticity (1978) 273.

    Google Scholar 

  46. Perzyna P., The Study of the Dynamic Behaviour of Rate-sensitive Plastic Materials, Arch. Mech. Stos., 15 (1963) 113.

    Google Scholar 

  47. Perzyna P., Thermodynamic Theory of Viscoplasticity, Adv. Appl. Mech., 11 (1971) 313.

    Google Scholar 

  48. Perzyna P., Sawczuk A., Problems of Thermoplasticity, Nucl. Eng. Design, 24 (1973) 1.

    Article  CAS  Google Scholar 

  49. Rebelo N., Kobayashi S., A Coupled Analysis of ViscoPlastic Deformation and Heat Transfer I–Theoretical Considerations, Int. J. Mech. Sci., 22 (1980) 699–705.

    Article  Google Scholar 

  50. Wertheimer T.B., Thermal Mechanically Coupled Analysis in Metal Forming Processes, Numerical Methods in Industrial Forming Processes (1982) 425–434.

    Google Scholar 

  51. Zienkiewicz O.C, di-late E., Heinrich J.C., Plastic Flow in Metal Forming - I. Coupled Thermal Behaviour in Extrusion - II. Thin Sheet Forming, Appl. Num. Meth. Form. Proc. ASME AMD 28 (1978) 107–120.

    Google Scholar 

  52. Rebelo N., Kobayashi S., A Coupled Analysis of ViscoPlastic Deformation and Heat Transfer II–Applications, Int. J. Mech. Sci., 22 (1980) 707–718.

    Google Scholar 

  53. Rahlston A., A First Course in Numerical Analysis, McGraw-Hill, New York (1965).

    Google Scholar 

  54. Chen C.C., Kobayashi S., Rigid-Plastic Finite Element Analysis of Ring Compression, Appl. Num. Meth. Form. Proc., ASME AMD 28 (1978) 163–174.

    Google Scholar 

  55. Wilson W.R.D., Friction and Lubrication in Bulk Metal Forming Processes, J. of Appl. Metalworking, 1 (1979) 7.

    Google Scholar 

  56. Rebelo N., Rydstad H., Schröder G., Simulation of Material Flow in Closed-Die Forging by Model Techniques and Rigid-Plastic FEM, Numerical Methods in Industrial

    Google Scholar 

  57. Gelten C.J.M, Konter A.W.A., Application of Mesh-Rezoning in the Updated Lagrangian Method to Metal Forming Analysis, Numerical Methods in Industrial Forming Processes (1982) 511–521.

    Google Scholar 

  58. Badawy A., Oh S.I., Altan T., A Remeshing Technique for the FEM Simulation of Metal Forming Processes, Proc. 1983 ASME Int. Computer Engr. Conf., Chicago (1983).

    Google Scholar 

  59. Park J.J., Kobayashi S., Three-Dimensional Finite Element Analysis of Block Compressions, Int. J. Mech. Sic., 26 (1984) 165.

    Google Scholar 

  60. Park J.J., Rebelo N., Kobayashi S., A New Approach to Preform Design in Metal Forming with the Finite Element Method, Int. J. Mach. Tool Des. Res., 23 (1983) 71–79. Forming Processes (1982) 237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Böer, C.R., Rebelo, N.M.R.S., Rydstad, H.A.B., Schröder, G. (1986). Mathematical Modelling. In: Process Modelling of Metal Forming and Thermomechanical Treatment. MRE Materials Research and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82788-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82788-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82790-7

  • Online ISBN: 978-3-642-82788-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics