Advertisement

Fast-Atom Bombardment Mass Spectra of O-Isopropyl Oligodeoxyribonucleotide Triesters

  • L. R. Phillips
  • K. A. Gallo
  • G. Zon
  • W. J. Stec
  • B. Uznanski
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 44)

Abstract

Oligodeoxyribonucleotides with alkylated internucleotide phosphate moieties are not only resistant to degradation by nucleases, but are also incorporated by cells, thus targeting this class of compounds for potential use as antiviral drugs and drug-carriers [1]. Subsequent to synthesis, these compounds must first be analyzed to verify the correctness of chemical structure. Fast-atom bombardment (FAB) mass spectrometry [2] has been used to examine some unprotected [3–7] and protected [8–10] oligonucleotides. Herein is reported the application of FAB mass spectrometry to the determination of several features characteristic of the primary structure of synthetic Oisopropyl oligodeoxyribonucleotide triesters, which are now accessible by means of recently reported methodology [11].

Keywords

Antiviral Drug Xenon Atom Lower Mass Region Alkylated Moiety Moderate Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.F. Torrence, J. Imai, R. Lesiak, J.C. Jarmoulle, H. Sawai, J. Warimmier, J. Balzarium and E. DeClerq, in Targets for the Design of Antiviral Agents, E. DeClerq and R.T. Walker, editors. Plenum Press, New York (1983), pp. 259–285.Google Scholar
  2. 2.
    M. Barber, R.S. Bordoli, R.D. Sedgwick and A.N. Tyler, J. Chem. Soc., Chem. Commun. 325 (1981).Google Scholar
  3. 3.
    L. Grotjahn, R. Frank and H. Blocker, Nucleic Acids Res. 10, 4671 (1982).CrossRefGoogle Scholar
  4. 4.
    L. Grotjahn, R. Frank and H. Blocker, Int. J. Mass Spectrom. Ion Phys. 46, 439 (1983).CrossRefGoogle Scholar
  5. 5.
    G. Sindona, N. Uccella and R. Weclawek, J. Chem. Res. (S) 184 (1982).Google Scholar
  6. 6.
    J. Eagles, C. Javanaud and R. Self, Biomed. Mass Spectrom. 11, 41 (1984).CrossRefGoogle Scholar
  7. 7.
    B.A. Connolly, B.V.L. Potter, F. Eckstein, A. Pingoud and L. Grotjahn, Biochemistry 23, 3443 (1984).CrossRefGoogle Scholar
  8. 8.
    W.J. Stec, G. Zon, W. Egan, R.A. Byrd, L.R. Phillips and R.A. Gallo, J. Org. Chem. 50, 3908 (1985).CrossRefGoogle Scholar
  9. 9.
    J. Ulrich, A. Guy, D. Molko and R. Teoule, Org. Mass Spectrom. 19, 585 (1984).CrossRefGoogle Scholar
  10. 10.
    D.L. Slowikowski and R.H. Schram, Nucleosides and Nucleotides 4, 309 (1985). Review of FAB/MS of oligonucleotides.Google Scholar
  11. 11.
    W.J. Stec, G. Zon, R.A. Gallo, R.A. Byrd, B. Uznanski and P. Guga, Tetrahedron Lett. 26, 2191 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. R. Phillips
    • 1
  • K. A. Gallo
    • 1
  • G. Zon
    • 1
  • W. J. Stec
    • 2
  • B. Uznanski
    • 2
  1. 1.Division of Biochemistry and Biophysics, Office of Biologics Research and ReviewFood and Drug AdministrationBethesdaUSA
  2. 2.Department of Bioorganic ChemistryPolish Academy of Sciences, Centre of Molecular and Macromolecular StudiesLodzPoland

Personalised recommendations