Advertisement

Solid Sample-SIMS on Biomolecules with Fast Ion Beams from the Uppsala EN-Tandem Accelerator

  • B. Sundqvist
  • A. Hedin
  • P. Håkansson
  • M. Salehpour
  • G. Säve
  • S. Widdiyasekera
  • R. E. Johnson
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 44)

Abstract

Secondary Ion Mass Spectrometry (SIMS) on bioorganic solids was first performed by R.D. MACFARLANE and coworkers [1] in 1974 using fission fragments from a Cf-252 source as primary particles. Fission fragments are fast particles i.e. with a velocity larger than the Bohr velocity (v0=2.0.108 cm/s) interacting mainly with the electrons in a medium. In most SIMS-studies performed so far slow particles are used as primaries. Slow particles interact primarily via elastic collisions with the atoms in a solid. Macfarlane called the mass spectrometric method based on the use of fission fragments from Cf-252 and time-of-flight (TOF) analysis, 252CfPlasma Desorption Mass Spectrometry (PDMS), and proposed a new formation process different from that assumed for the secondary ion formation by keV-ions. 1976 BENNINGHOVEN et al. applied static SIMS to bioorganic solids. Very similar spectra were found and therefore the same ion formation process for PDMS and SIMS was postulated [2]. A major contribution to the field was made in 1981 by BARBER et.al. [3] with the introduction of slow ion-liquid sample-SIMS with a magnetic sector instrument (FAB).A1ready at an early stage Macfarlane et.al. showed that fission fragments were very effective to desorb and ionize large and labile biomolecules [4] and a joint study by the Texas and Uppsala groups showed that the fast primaries are more efficient than slow primaries and more so the larger the molecule is [5].

Keywords

Fission Fragment Thickness Dependence Slow Particle Initial Velocity Distribution Plasma Desorption Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.F. Torgerson, R.P. Skowronski and R.D. Macfarlane: Biochem. Biophys. Res Commun. 60, 616 (1974)CrossRefGoogle Scholar
  2. 2.
    A. Benninghoven, D. Jaspers and W. Sichtermann: Appl. Phys. 11, 35 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    M. Barber, R.S. Bordoli, R.D. Sedgewick and A.N. Tyler: I. Chem. Soc. Chem. Commun. 325, (1981)Google Scholar
  4. 4.
    R.D. Macfarlane and D.F. Torgerson: Science 191, 920 (1976)Google Scholar
  5. 5.
    I. Kamensky, P. Hâkansson, B. Sundqvist, C.J. McNeal and R.D. Macfarlane: Nucl. Instr. Meth. 198, 65 (1982)CrossRefGoogle Scholar
  6. 6.
    B. Sundqvist: Nucl. Instr. Meth. 218, 267 (1983)CrossRefGoogle Scholar
  7. 7.
    P. Dick, W. Treu, H. Fröhlich, W. Galster and H. Voit: Surf. Sci. 95, 603 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    P. Hâkansson, A. Johansson, I. Kamensky, B. Sundqvist, J. Fohlman and P. Peterson: IEEE Trans. Nucl. Sci. NS-28–2, 1776 (1981)Google Scholar
  9. 9.
    W. Guthier, O. Becker, W. Knippelberg, K. Weikert, K. Wien, S. DellaNegra, Y. LeBeyec, P. Wieser and R. Wurster: Int. J. Mass. Spectrom. Ion Phys. 53, 185 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    S. DellaNegra, D. Jacquet, I. Lorthiois, Y. LeBeyec, O. Becker and K. Wien: Int. J. Mass. Spectrom. Ion Phys. 53, 215 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    P. Hâkansson, I. Kamensky and B. Sundqvist: Surf. Sci. 116, 302 (1982)CrossRefGoogle Scholar
  12. 12.
    E. Nieschter, B. Nees, N. Bischof, H. Fröhlich, W. Tiereth and H. Voit: Surf. Sci. 145, 294 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    P. Hâkansson, E. Jayasinghe, A. Johansson, I. Kamensky and B. Sundqvist: Phys. Rev. Lett. 47, 1227 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    E. Nieschter, B. Nees, N. Bischof, H. Fröhlich, W. Tiereth and H. Voit: Rad. Eff. 83, 121 (1984)CrossRefGoogle Scholar
  15. 15.
    M. Salehpour, P. Hâkansson, B. Sundqvist and S. Widdiyasekera: TLU 123/85, Tandem Laboratory Report, Uppsala, Sweden, 1985. Presented at the Int. Conf. Atomic Coll. in Solids, Washington D.C., 1985 ( To appear in Nucl. Instr. Meth. )Google Scholar
  16. 16.
    P. Hâkansson, I. Kamensky, B. Sundqvist, J. Fohlman, P. Peterson, C.J. McNeal and R.D. Macfarlane: J. Am. Chem. Soc. 104, 2948 (1982)CrossRefGoogle Scholar
  17. 17.
    U. Jönsson, G. Olofson, M. Malmquist, G. Säve, P. Hâkansson, J. Fohlman and B. Sundqvist: TLU 129/85, Tandem Laboratory Report, Uppsala, Sweden, 1985Google Scholar
  18. 18.
    G. Säve, P. Hâkansson, B. Sundqvist and U. Jönsson: TLU 127/85, Tandem Laboratory Report, Uppsala, Sweden, 1985Google Scholar
  19. 19.
    S. Widdiyasekera, P. Hâkansson, B. Sundqvist and G. Säve: TLU 124/85, Tandem Laboratory Report, Uppsala, Sweden, 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • B. Sundqvist
    • 1
  • A. Hedin
    • 1
  • P. Håkansson
    • 1
  • M. Salehpour
    • 1
  • G. Säve
    • 1
  • S. Widdiyasekera
    • 1
  • R. E. Johnson
    • 2
  1. 1.Tandem Accelerator LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Department of Nuclear Engineering and Engineering PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations