Skip to main content

Some Fringe Effects of the Flow on the Macromolecules in Dilute Polymer and on Their Non-Newtonian Behaviour

  • Conference paper
The Influence of Polymer Additives on Velocity and Temperature Fields

Abstract

Diluted solutions of high molecular weight polymers display generally in a laminar simple shear flow, a shearthinning effect, which is a peculiar case of non Newtonian behaviour [Lohmander (1), Wolff (2), Kotaka et al. (3), Yang (4)]. Shearthinning has been explained for rigid macromolecules, by their orientation in the flow direction partly counterbalanced by Brownian motion [Peterlin (5), Saito (6)], while several origins of this behaviour have been proposed for flexible macromolecules: Internal viscosity [Cerf (7), Bazua et al. (8), de Gennes (9)], shear rate dependence of the excluded volume [Fixman (10)], non Hookian restoring forces between the chain segments [Rheinhold et al. (11), Fong et al. (12)], orientation effects [Chikahisa (13)]; an unified theory taking into account some of these parameters has been presented by Bird et al. (14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lohmander, U.: Non-newtonian flow of dilute macromolecular solutions studied by capillary viscometry. Makromol. Chem. 72 (1964) 159–173

    Article  Google Scholar 

  2. Wolff, C.: Recherches expérimentales sur la viscosité non newtonienne des solutions très diluées de macromolécules en chaînes souples. J. Chim. Phys. 65,9 (1968) 1569–1579

    Google Scholar 

  3. Kotoka, T.; Suzuki, H.; Inagaki, H.: Shear rate dependence of the intrinsic viscosity of flexible linear macromolecules. J. Chem. Phys. 45,8 (1966) 2770–2773

    Article  ADS  Google Scholar 

  4. Yang, J.T.: Non newtonian viscosity of PBLG solutions. J.Am. Chem. Soc. 80 (1958) 1783–1788

    Article  Google Scholar 

  5. Peterlin, A.: Über die Viskosität von verdünnten Lösungen und Suspensionen in Abhängigkeit von der Teilchenform. Zeitschrift für Phys. 111 (1938) 232–263

    Article  ADS  Google Scholar 

  6. Saito, N.: The effect of the brownian motion on the viscosity of solutions of macromolecules. J. Phys. Soc. Jap. 6,5 (1951) 297–301

    ADS  Google Scholar 

  7. Cerf, R.: Sur la théorie des propriétés hydrodynamiques des solutions de macromolécules en chaînes. J. Chim. Phys. 66 (1969) 479–488/Cerf, R.: Dynamics of linear polymeric chains. Chem. Phys. letters 24,3 (1974) 317–322

    Article  ADS  Google Scholar 

  8. Bazua, E.R.; Williams, M.C.: Rheological properties of internal viscosity models with stress symmetry. J. Polym. Sci. 12 (1974) 825–848

    Google Scholar 

  9. De Gennes, P.G.: Origin of internal viscosity in dilute polymer solutions. J. Chem. Phys. 66 (1977) 5825–5826

    Article  ADS  Google Scholar 

  10. Fixman, M.: Polymer dynamics: Non-newtonian intrinsic viscosity. J. Chem. Phys. 45 (1966) 793–803

    Article  ADS  Google Scholar 

  11. Rheinhold, C.; Peterlin, A.: Hydrodynamics of linear macromolecules. I. Finite segment length. J. Chem. Phys. 44 (1966) 4333–4341

    Google Scholar 

  12. Fong, J.T.; Peterlin, A.: Matrix algebra and eigen values for the bead/spring model of polymer solutions. J. Res. Nat. Bur. of Standards B 8013,2 (1976) 273–284

    MathSciNet  Google Scholar 

  13. Chikahisa, Y.: Non-newtonian intrinsic viscosity of coiled chain polymers. J. of the Phys. Soc. of Japan 21, 11 (1966) 2324–2331

    Article  ADS  Google Scholar 

  14. Bird, R.B.; Dodson, P.J.; Johnson, J.L.: Non-newtonian polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non Newt. Fl. Mech. 7 (1980) 213

    Article  MATH  Google Scholar 

  15. Wolff, C. (Ed) Polymères et lubrification, colloque international du CNRS n° 233, Brest ( 1974 ), CNRS, Paris (1975)

    Google Scholar 

  16. Schutz, R.A.: Theoretical and practical aspects of sizing today and tomorrow. Proc. 3d Intern. Sizing Symp., Shirley Institute (Ed.) Manchester 1977, Paper no 1 pp 1–9

    Google Scholar 

  17. Shick, M.J.: Friction and lubrication of synthetic fibers in surface characteristics of fibers and textiles, Schick M.J. ( Ed ), Marcel Dekker, 1975, pp 1–65

    Google Scholar 

  18. Burow, S.; Peterlin, A.; Turner D.T.: Increasing viscosity of polymer solutions with increasing shear stress. Polymer letters 2 (1964) 67–70

    Article  Google Scholar 

  19. Quadrat, O.; Bohdanecky, M; Munk, P.: Influence of thermodynamic quality of a solvent upon non-newtonian viscosity of PMMA solutions. J. Polym. Sci. C 16 (1967) 95–102

    Google Scholar 

  20. Wolff, C.: Sur l’augmentation de la viscosité intrinsèque de certaines solutions macromoleculaires avec le gradient de vitesse. C.R. Acad. Sci. Paris C 264 (1967) 1364–1367

    Google Scholar 

  21. Layec-Raphalen, M.N.; Wolff, C.: On the shear thickening behaviour of dilute solutions of chain macromolecules. J. Non Newt. Fl. Mech. 1 (1976) 159–173

    Article  Google Scholar 

  22. Ouibrahim, A.: Rheology of polymer solutions in laminar capillary tube flow. Phys. Fluids 21,1 (1978) 4–8

    Article  ADS  Google Scholar 

  23. Moan, M.; Chauveteau, G.; Ghoniem, S.: Entrance effect in capillary flow of dilute and semi dilute solutions. J. Non Newt. Fl. Mech. 5 (1979) 463–474

    Article  Google Scholar 

  24. Haas, R.; Durst, F.: Die Charakterisierung viskoelastischer Fluide mit Hilfe ihrer Strömungseigenschaften in Kugelschüttungen. Rheologica Acta 21 (1982) 150–166

    Article  Google Scholar 

  25. Toms, B.A.: Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proc. Int. Congr. Rheol. North Holland (1948), vol. II, pp 135–141

    Google Scholar 

  26. Hoyt, J.W.: The effect of additives on fluid friction. J. Basic Engng, Trans ASME 94 (1972) 258–285

    Google Scholar 

  27. Berman, N.S.: Drag reduction by polymers. Ann. Rev. F1. Mech. 10 (1978) 47–64

    Article  Google Scholar 

  28. Virk, P.S.: Drag reduction fundamentals. AICHE J. 21,4 (1975) 625–655

    Article  Google Scholar 

  29. Conference on Drag Reduction BHRA Cambridge 1977

    Google Scholar 

  30. Jellinek, H.H.G. (Ed): Degradation and stabilization of polymers, Elsevier Sci. Publ. 1983

    Google Scholar 

  31. Levinthal, C.; Davison, P.F.: Degradation of DNA under hydrodynamic shearing forces. J. Mol. Biol. 3 (1961) 674–683

    Article  Google Scholar 

  32. Levinthal C.; Davison, P.F.: Shear degradation and the molecular weight of DNA. J. Chim. Phys. 58 (1961) 887–890

    Google Scholar 

  33. Harrington, R.E.; Zimm, B.H.: Degradation of polymers by controlled hydrodynamic shear. J. Phys. Chem. 69 (1965) 161–175

    Article  Google Scholar 

  34. Cottrell, F.R.; Merrill, E.W.; Smith, K.A.: Conformation of PIB in dilute solutions subjected to a hydrodynamic shear field. J. Polym. Sci. A2,7 (1969) 1415–1434

    Google Scholar 

  35. Cottrell, F.R.; Merrill, E.W.; Smith, K.A.: Intrinsic viscosity and axial extension ratio of PIB in dilute solutions J. Polym. Sci. A2, 8 (1970) 289–294

    Google Scholar 

  36. Smith, K.A.; Merrill, E.W.; Banijamali, H.: Elongation of drag reducing macromolecules by a pure straining motion. Polymères et lubrification, colloque CNRS n° 233, Brest (1974), C. Wolff (Ed); CNRS, Paris 1975, pp 341–344

    Google Scholar 

  37. North, P.F.; Champion, J.V.: Hydrodynamic degradation of DNA J. Chim. Phys. 71,5 (1974) 1282–1284

    Google Scholar 

  38. Yu, J.F.S.; Zakin, J.L.; Patterson, G.K.: Mechanical degradation of high molecular weight polymer in dilute solutions. J. Appl. Polym. Sci. 23 (1979) 2493–2512

    Article  Google Scholar 

  39. Tanner, R.T.; Huilgol, R.R.: On a classification scheme of flow fields. Rheol. Acta 14 (1975) 959–962

    Article  MATH  Google Scholar 

  40. Culter, J.D.; Zakin, J.L.; Patterson, G.K.: Mechanical degradation of dilute solutions of high polymers in capillary tube flow. J. Appl. Polym. Sci. 19 (1975) 3235–3240

    Article  Google Scholar 

  41. Culter, J.D.; Mayhan, K.G.; Patterson, G.K.; Sarmasti, A.A.; Zakin, J.L.: Entrance effects on capillary degradation of dilute polystyrene solutions. J. Appl. Polym. Sci. 16 (1972) 3381–3385

    Article  Google Scholar 

  42. Ghoniem, S.: Rheological behaviour and degradation of polymeric solutions in modelized porous media. Dr. Ing. Thesis, University of Brest (1979)

    Google Scholar 

  43. Ghoniem, S.; Chauveteau G.; Moan, M.; Wolff, C.: Mechanical degradation of semi-dilute polymer solutions in laminar flows. Can. J. of Chem. Engng. 59 (1981) 450–454

    Article  Google Scholar 

  44. Ram, A.: Polymers and their effectiveness in drag reduction. Colloque CNRS no 233, Brest (1974); Wolff, C. (Ed); CNRS, Paris, 1975, pp 271–282

    Google Scholar 

  45. Gampert, B.; Wagner, P.: Turbulent flow with polymer additives. Arch. Mech. 34,4 (1982) 493–502

    Google Scholar 

  46. Nakano, A.; Minoura, Y.: Effect of solvent and concentration on scission of polymers with high-speed stirring. J. Appl. Polym. Sci. 19 (1975) 211–2130

    Google Scholar 

  47. Odelle, J.A.; Keller, A.; Miles, M.J.: A method for studying flow-induced degradation: verification of chain halving. Polym. Comm. 24 (1983) 7–10

    Google Scholar 

  48. Maerker, J.M.: Shear degradation of polyacrylamide solutions. Proc. 49th Annual Fall Meet. Soc. Petrol. Eng. of AIME, Houston (1974)

    Google Scholar 

  49. Hinch, E.J.; Elata, C.: Heterogeneity of dilute polymer solutions. J.N. New. F1. Mech. 5 (1979) 411–425

    Article  Google Scholar 

  50. Wolff, C.: On the real molecular weight of polyethylene oxide of high molecular weight in water. Can. J. Chem. Eng. 58 (1980) 634–636

    Article  Google Scholar 

  51. Layec, Y.; Layec-Raphalen, M.N.: Instability of dilute PEO solutions. J. Phys. Letters 44 (1983) 121–128/Layec, Y.; Layec-Raphalen, M.N.: Private communication

    Google Scholar 

  52. Kulicke, W.M.; Klein J.: Zur Frage der Instabilität von Polyacrylamidlösungen. Angew. Makromol. Chem. 69 (1977) 189–210

    Google Scholar 

  53. Kulicke, W.M.; Kniewske, R.; Klein, J.: Preparation, Characterization, Solution Properties and Rheological Behaviour of Polyacrylamide Prog. Polym. Sci. 8 (1982) 373–468

    Google Scholar 

  54. Kulicke, W.M.; Kniewske, R.: Long term change in conformation of macromolecules in solution. Poly(acrylamid-co-sodium acrylate)s. Makromol. Chem. 182 (1981) 2277–2287

    Article  Google Scholar 

  55. Kulicke, W.M.; Hörl, H.H.: Zur Characterisierung und dem ungewöhnlichen Viskositätszeit-Verhalten von mäßigen Polystyrolsulfonatlösungen. Angw. Makromol. Chem. 116 (1983) 149–164

    Article  Google Scholar 

  56. Shyluk, W.P.; Stow, F.S. Jr.: Aging and loss of flocculation activity of aqueous polycrylamide solutions. J. Appl. Polym. Sci. 13 (1969) 1023–1036

    Article  Google Scholar 

  57. Narkis, N.; Rebhun, M.: Aging effects in measurements of polyacrylamide solution viscosities. Polymer 1 (1966) 507–512

    Article  Google Scholar 

  58. Brennan, C.; Gadd, G.E.: Aging and degradation in dilute polymer solutions. Nature 215 (1967) 1368–1370

    Article  ADS  Google Scholar 

  59. James, D.F.: Method for measuring normal stresses in dilute polymer solutions. Trans. Soc. Rheol. 19 (1975) 67–72

    Article  Google Scholar 

  60. Stenberg, L.G.; Lagerstedt, T.; Lindgren, E.R.: Mechanical mixing of polymer additives in turbulent drag reduction. Phys. Fluids 20 (1977) 5276–5280

    Article  Google Scholar 

  61. White, A.: Some observations on the flow characteristics of certain dilute macromolecular solutions in viscous drag reduction. CS Wells ed, Plenum Press 1969, 297–311

    Google Scholar 

  62. Kit, E.; Poreh, M.: Drag of circular cylinders in dilute polymer solutions. Second Intern. Conf. on drag reduction, BHRA. Cambridge 1977, paper F2, 15–24

    Google Scholar 

  63. Naudascher, A.; Killen, J.M.: Onset and saturation limit of polymer effects in porous media flows. Phys. Fl. 20 (1977) 5280–5283

    Article  Google Scholar 

  64. Peterlin, A.; Quan, C.; Turner, D.T.: Role of molecular aggregates in the flow properties of PMMA in Arochlor. Polym. Lett 3 (1965) 521–524

    Article  Google Scholar 

  65. Wolff C.: On non Newtonian intrinsic viscosity of flexible coil macromolecules. 23e Intern. Congress IUPAC, Boston 1971. Macromolecular preprints, Vol. 1, p. 23–27

    Google Scholar 

  66. Goldsmith, H.L.; Mason, S.G.: The microrheology of dispersions. Rheology; theory and applications. Eirich, F. (Ed), Academic Press 1967, vol. 4 p. 85–250

    Google Scholar 

  67. Wagstaff, I.; Chaffey, C.E.: “Shearthinning and thickening rheology”. I. Concentrated acrylic dispersions. J. Colloid Interface Sci. 59 (1977) 53–62

    Google Scholar 

  68. Chaffey, C.E.; Wagstaff, I. “Shear thinning and thickening rheology”. II. Volume fraction and size of disperses particules. J. Colloid Interface Sci. 59 (1977) 63–75

    Google Scholar 

  69. Chaffey C.E. “Mechanismus and equations for shearthinning and thickening in dispersions”. Colloid and Polymer Sci., 255 (1977) 691–698

    Article  Google Scholar 

  70. Brochard F.; de Gennes, P.G.: “Dynamical scaling for polymer in theta solvents”. Macromolecules 10 (1977) 1157–1161

    Article  ADS  Google Scholar 

  71. Wolff, C.; Silberberg, A.; Priel, Z.; Layec-Raphalen, M.N. “Influence of the association of macromolecules in dilute solution on their reduced viscosity”. Polymer, 20 (1979) 281–287

    Article  Google Scholar 

  72. Layec-Raphalen, N.M.; Wolff, C.: “Shear rate dependance of the association of high molecular weight macromolecules in dilute solutions. ” Rheology. Astarita, G.; Marrucci, G.; Nicolais, L. (Ed), Plenum Press 1980, vol. 2, pp. 303–308

    Google Scholar 

  73. Wolff, C. “Non newtonian behaviour of associations of macromolecules in dilute solutions”. Adv. in colloid and Interface Sci., 17 (1982) 263–274

    Article  Google Scholar 

  74. de Gennes, P.G.: “Coil stretch transition of dilute flexible polymers under ultrahigh velocity gradients”. J. Chem. Phys. 60 (1974) 5030–5042

    Article  ADS  Google Scholar 

  75. Ambari, A.: “Ecoulement des solutions aqueuses diluées de polyoxyethylene dans une fente rectangulaire très allongée en mince paroi.” C.R. A.ad. Sc. Paris, 289 B (1979) 1–4

    Google Scholar 

  76. Pope, D.P.; Keller, A.: “A study of the chain extending effect of elongational flow in polymer solutions.” Colloid and Polymer Sc. 256 (1978) 751–756

    Article  Google Scholar 

  77. Cressely, R.; Hocquart, R.: “Dynamic of flexible and large macromolecules in elongational flow using flow birefringence. Rheology. Astarita, G., Marrucci, G., Nicolais, L. (Ed), Plenum Press (1980), Vol. 2 pp. 377–383

    Google Scholar 

  78. Wolff, C.: “Molecular origin of the shear thickening of dilute polymer solutions.” 2nd World Cong. of Chem. Eng., Montreal (1981), Proceed. Vol. 6, pp. 394–398

    Google Scholar 

  79. Dupuis, D.; Wolff, C.: “Consequences of a conformational change of flexible macromolecules on their solutions.” Chem. Eng. Comm. (under press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer, Berlin Heidelberg

About this paper

Cite this paper

Raphalen, M.N.L., Wolff, C. (1985). Some Fringe Effects of the Flow on the Macromolecules in Dilute Polymer and on Their Non-Newtonian Behaviour. In: Gampert, B. (eds) The Influence of Polymer Additives on Velocity and Temperature Fields. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82632-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82632-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82634-4

  • Online ISBN: 978-3-642-82632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics