Exact Solution of the Anderson Model and Its Thermodynamics II — Including Crystalline Field and Spin-Orbit Coupling

  • N. Kawakami
  • A. Okiji
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 62)


The thermodynamic properties of the highly correlated degenerate Anderson model are discussed on the basis of the Bethe-ansatz method, in the presence of the crystalline field and the spin-orbit coupling. The properties of the specific heat are investigated in detail, as a typical example, for the case of Ce impurities in a cubic crystalline field. The analytic expressions are given for the Fermi-liquid relation, the coefficient of the T-linear specific heat and the effective Kondo temperature. The curve of the temperature-dependent specific heat is shown to become asymmetric and have a shoulder structure when the splitting of the crystalline field is increased.


Anderson Model Charge Fluctuation Kondo Temperature Crystalline Field Specific Heat Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Okiji and N. Kawakami: in this volume.Google Scholar
  2. 2.
    A.M. Tsvelick and P.B. Wiegmann: J. Phys. C15, 1707 (1982)ADSGoogle Scholar
  3. 3.
    A.C. Hewson and J.W. Rasul: J. Phys. C16, 6799 (1983)ADSGoogle Scholar
  4. 4.
    V.T. Rajan: Phys. Rev. Lett. 51, 308 TV983)Google Scholar
  5. 5.
    P. Schlottmann: Phys. Rev. Lett. 50, 1697 (1983)CrossRefADSGoogle Scholar
  6. 6.
    N. Kawakami, S. Tokuono and A. Okiji: J. Phys. Soc. Jpn. 53, 51 (1984)CrossRefADSGoogle Scholar
  7. 7.
    N. Kawakami and A. Okiji: Phys. Lett. 103A, 205 (1984)CrossRefGoogle Scholar
  8. 8.
    P. Schlottmann: Z. Phys. B57, 23 (19841Google Scholar
  9. 9.
    D.M. Newns and A.C. Hewson: J. Phys. F10, 2429 (1980)CrossRefADSGoogle Scholar
  10. 10.
    I. Okada and K. Yosida: Prog. Theor. Phys. 49, 1483 (1973)CrossRefADSGoogle Scholar
  11. 11.
    A. Ogawa and A. Yoshimori: Prog. Theor. Phys. 53, 315 (1975)CrossRefADSGoogle Scholar
  12. 12.
    K. Yamada, K. Yosida and K. Hanzawa: Prog. Theor. Phys. 71, 450 (1984)CrossRefADSGoogle Scholar
  13. 13.
    P. Nozieres and A. Blandin: J. Physique 41, 193 (1980)Google Scholar
  14. 14.
    P. Schlottmann: Z. Phys. B55, 293 (1984); Phys. Rev. B30, 1545 (1984)ADSGoogle Scholar
  15. 15.
    N. Kawakami and A. Okiji: J. Phys. Soc. Jpn. 54, 685 T1985 )Google Scholar
  16. 16.
    N. Kawakami and A. Okiji: to be published.Google Scholar
  17. 17.
    C.N. Yang: Phys. Rev. Lett. 19, 1312 (1967)CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    B. Sutherland: Phys. Rev. Lett. 20, 98 (1967)CrossRefADSGoogle Scholar
  19. 19.
    If we rewrite Eqs. (4.12) and (4.13) with the band cut-off parameter, the results are in accordance with those obtained in refs.12 and 14.Google Scholar
  20. 20.
    F. Steglich, C.D. Bredl, W. Lieke, U. Rauchschwalbe and G. Sparn: Physica 126B, 82 (1984); F. Steglich: private communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • N. Kawakami
    • 1
  • A. Okiji
    • 1
  1. 1.Department of Applied PhysicsOsaka UniversitySuita, Osaka 565Japan

Personalised recommendations