Skip to main content

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 3))

Abstract

The frequent lack of correlation between endogenous levels of auxins and selected physiological processes which has often been reported in the literature suggests the conclusion that such correlations do not often exist. However, from a critical evaluation of the methods used for such studies, it is apparent that most of the qualitative and quantitative determinations made for auxins in general did not comply with good analytical practice. For example, some mass spectra (MS) of both reference and putative IAA derivatives that have been recently published in the literature contain gross errors (i.e., Arteca et al. 1980). In addition, many of the quantitative calculations have been based on nonspecific ions or detector signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JRF, Baker DA (1980) Free tryptophan and indole-3-acetic acid levels and vascular pathways of Ricinus communis L. Planta 148:69–74

    Article  CAS  Google Scholar 

  • Allen JRF, Holmstedt B (1980) The simple ß-carbolines. Phytochemistry 19:1573–1582

    Article  CAS  Google Scholar 

  • Allen JRF, Rebeaud JER, Rivier L, Pilet PE (1982a) Quantification of indole-3-acetic acid by GC-MS using deuterated labeled internal standard. In: Schmidt HL, Forstel HL, Heinziger K (eds) Stable isotopes. Elsevier, Amsterdam, pp 529–534

    Google Scholar 

  • Allen JRF, Rivier L, Pilet PE (1982b) Quantification of indol-3-yl-acetic acid in pea and maize seedlings by gas chromatography-mass spectrometry. Phytochemistry 21:523–534

    Article  Google Scholar 

  • Arteca RN, Poovaiah BW, Smith OE (1980) Use of high performance liquid chromatography for the determination of endogenous hormone levels in Solanurn tuberosum L. subjected to carbon dioxide enrichment of the root zone. Plant Physiol 65:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Kuraishi S, Hayashi T (1976) An improvement of auxin extraction procedure and its application to cultured plant cells. Planta 129:245–247

    Article  CAS  Google Scholar 

  • Bandurski RS (1979) Chemistry and physiology of conjugates of indole-3-acetic acid. In: Mandava N (ed) Plant growth substances. Am Chem Soc Symp Ser 111:1–17

    Google Scholar 

  • Bandurski RS (1984) Metabolism of indole-3-acetic acid. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Cambridge, Soc of Exp Biol, Sem Ser 23:183–200

    Google Scholar 

  • Bearder J (1980) Plant hormones and other growth substances — their background, structure and occurrence. In: MacMillan J (ed) Hormonal regulation of development I. Encyclopedia of plant physiology new serie, vol 9. Springer, Berlin Heidelberg New York, pp 9–112

    Chapter  Google Scholar 

  • Bialek K, Meudt WJ, Cohen JD (1983) Indole-3-acetic acid (IAA) and IAA conjugates applied to been stem sections. Plant Physiol 73:130–134

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H, Djerassi C, Williams DH (1964) Interpretation of mass spectra of organic compounds. Holdan-Day, San Fransisco, pp 251–253

    Google Scholar 

  • Bush ED, Trager WF (1981) Analysis of linear approaches to quantitative stable isotope methodology in mass spectrometry. Biomed Mass Spectrometry 8:211–218

    Article  CAS  Google Scholar 

  • Caruzo JL, Zeisler CS (1983) Indole-3-acetic acid in douglas fir seedlings: a reappraisal. Phytochemistry 22:589–590

    Article  Google Scholar 

  • Chapman JR (1978) Computers in mass spectrometry. Academic Press, London New York San Fransisco, pp 265

    Google Scholar 

  • Cohen JD (1984) Convenient apparatus for the generation of small amounts of diazomethane. J Chromatogr 303:193–196

    Article  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Cohen JD, Bialek K (1984) The biosynthesis of indole-3-acetic acid in higher plants. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Cambridge, Soc Exp Biol, Sem Ser 23:165–181

    Google Scholar 

  • Cohen JD, Schulze A (1981) Double-standard isotope dilution assay. I. Quantitative assay of indole-3-acetic acid. Anal Biochem 112:249–257

    Article  PubMed  CAS  Google Scholar 

  • Dawson PH (ed) (1976) Quadrupole mass spectrometry and its applications. Elsevier, Amsterdam Oxford New York, pp 349

    Google Scholar 

  • Elliott MC, Stowe BB (1971) Indole compounds related to auxins and goitrogens of wood (Isatis tinctoria L.). Plant Physiol 47:366–372

    Article  PubMed  CAS  Google Scholar 

  • Engvild KC, Egsgaard H, Larsen E (1981) Determination of 4-chloroindoleacetic acid methyl ester in Viciae species by gas chromatography-mass spectrometry. Physiol Plant 53:79–81

    Article  CAS  Google Scholar 

  • Epstein E, Cohen JD (1981) Microscale preparation of pentafluorobenzyl ester: electron-capture GC detection of IAA from plants. J Chromatogr 209:413–420

    Article  CAS  Google Scholar 

  • Epstein E, Cohen JD, Bandurski RS (1980) Concentration and metabolic turnover of in-doles in germinating kernels of Zea mays L. Plant Physiol 65:415–421

    Article  PubMed  CAS  Google Scholar 

  • Freeman RR (ed) (1979) High resolution gas chromatography. Hewlett-Packard, Avondale, pp 162

    Google Scholar 

  • Harrison AG (1983) Chemical ionization mass spectrometry. Chemical Rubber Company Press, Boca Raton, pp 630

    Google Scholar 

  • Hofinger M (1980) A method of quantification of indole auxins in the picogram range by high performance GC of their heptafluorobutyryl derivative. Phytochemistry 19:219–221

    Article  CAS  Google Scholar 

  • Iino M (1982) Action of red light on IAA status and growth in coleoptiles of etiolated maize seedlings. Planta 156:21–32

    Article  CAS  Google Scholar 

  • Iino M, Yu ST, Carr DJ (1980) Improved procedure for the estimation of nanogram quantities of indole-3-acetic acid in plant extracts using the indolo-pyrone fluorescence method. Plant Physiol 66:1099–1105

    Article  PubMed  CAS  Google Scholar 

  • Jamieson WD, Hutzinger O (1970) Identification of simple naturally occuring indoles by mass spectrometry. Phytochemistry 9:2029–2036

    Article  CAS  Google Scholar 

  • Jennings W (1980) Gas chromatography with capillary columns 2nd ed. Academic Press, New York, pp 184

    Google Scholar 

  • Knox JP, Wareing PF (1984) Apical dominance in Phaseolus vulgaris L.: the possible roles of abscisic acid and indole-3-acetic acid. J Exp Bot 35:239–244

    Article  CAS  Google Scholar 

  • Letham DS, Goodwin PB, Higgins TJV (ed) Phytohormones and related compounds, a treatise, vol 1: the biochemistry of phytohormones and related compounds, and vol 2: phytohormones and the development of higher plants. Elsevier, Amsterdam

    Google Scholar 

  • MacMillan J (ed) (1980) Hormonal regulation of development I. Encyclopedia of plant physiology new serie, vol 9. Springer, Berlin Heidelberg New York, pp 681

    Google Scholar 

  • Magnus V, Bandurski RS, Schultze A (1980) Synthesis of 4,5,6,7 deuterium-labeled IAA for use in mass spectrometric assays. Plant Physiol 66:775–781

    Article  PubMed  CAS  Google Scholar 

  • Mann JD, Jaworski EG (1970) Minimizing loss of indoleacetic acid during purification of plant extracts. Planta 92:285–291

    Article  CAS  Google Scholar 

  • Martin GC, Scott IM, Neill SJ, Horgan R (1982) Identification of abscisic acid glucose ester, indole-3-acetic acid, zeatin and zeatin riboside in receptacles of pear. Phytochemistry 21:1079–1082

    Article  CAS  Google Scholar 

  • McDougall J, Hillman JR (1978) Analysis of indole-3-acetic acid using GC-MS techniques. In: Hillman JR (ed) Isolation of plant growth substances. Cambridge University Press, London, pp 1–25

    Google Scholar 

  • McDougall J, Hillman JR (1980) Derivatives of indole-3-acetic acid for STM GC-MS studies. Z Pflanzenphysiology 98:89–93

    CAS  Google Scholar 

  • McFadden WH (ed) (1973) Techniques of combined gas chromatography-mass spectrometry: application in organic analysis. Wiley, New York London Sydney Toronto, pp 463

    Google Scholar 

  • Millard BJ (1978) Quantitative mass spectrometry. Heyden, London Philadelphia Rheine, pp 171

    Google Scholar 

  • Munson B (1977) Chemical ionization mass spectrometry: ten years after. Analyt Chem 49:772A–778A

    Article  CAS  Google Scholar 

  • Noma M, Koike N, Sano M, Kawashima N (1984) Endogenous indole-3-acetic acid in the stem of tobacco in relation to flower neoformation as measured by mass spectrometric assay. Plant Physiol 75:257–260

    Article  PubMed  CAS  Google Scholar 

  • Nonhebel HM, Bandurski RS (1984) Oxidation of indole-3-acetic acid and oxindole-3acetic acid to 2,3-dihydro-7-hydro-2-oxo-1 H indole-3-acetic acid-7’-O-ß-glucopyranoside in Zea mays seedlings. Plant Physiol 76:979–983

    Article  PubMed  CAS  Google Scholar 

  • Nonhebel HM, Crozier A, Hillman JR (1983) Analysis of [14C]indole-3-acetic acid metabolites from the primary roots of Zea mays seedlings using reverse-phase high-performance liquid chromatography. Physiol Plant 57:129–134

    Article  CAS  Google Scholar 

  • Pengelly WL, Hall PJ, Schulze A, Bandurski RS (1982) Distribution of free and bound indole-3-acetic acid in the cortex and stele of Zea mays mesocotyl. Plant Physiol 69:1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Pilet PE, Rebeaud JER (1983) Effect of abscisic acid on growth and indolyl-3-acetic acid levels in maize roots. Plant Sci Lett 31:117–122

    Article  CAS  Google Scholar 

  • Pilet PE, Saugy M (1985) Effect of applied and endogenous IAA on maize root growth. Planta 164:254–258

    Article  CAS  Google Scholar 

  • Plett T, Böttger M, Hedden P, Graebe J (1984) Occurrence of 4-C1-indoleacetic acid in broad bean and correlation of its levels with seed development. Plant Physiol 74:320–323

    Article  Google Scholar 

  • Powers JC (1968) The mass spectrometry of simple indoles. J Org Chem 5:2044–2050

    Article  Google Scholar 

  • Purcell JE (1982) Quantitative capillary gas chromatographic analysis. Chromatographia 15:546–558

    Article  CAS  Google Scholar 

  • Rayles DL, Purves WK (1967) Isolation and identification of indole-3-ethanol (tryptophol) from cucumber seedlings. Plant Physiol 42:520–524

    Article  Google Scholar 

  • Reeve DR, Crozier A (1980) A quantitative analysis of plant hormones. In: MacMillan J (ed) Hormonal regulation of development I. Encyclopedia of plant physiology new serie vol 9. Springer, Berlin Heidelberg New York, pp 203–280

    Chapter  Google Scholar 

  • Reinecke DM, Bandurski RS (1983) Oxindole-3-acetic acid, an IAA catabolite in Zea mays L. Plant Physiol 71:211–213

    Article  PubMed  CAS  Google Scholar 

  • Rivier L, Pilet PE (1971) Composés hallucinogènes indoliques naturels. Ann Biol 10:129–149

    CAS  Google Scholar 

  • Rivier L, Pilet PE (1974) Indolyl-3-acetic acid in cap and apex of maize roots: identification and quantification by mass fragmentography. Planta 120:107–112

    Article  CAS  Google Scholar 

  • Rivier L, Pilet PE (1983) Simultaneous gas chromatographic-mass spectrometric determination of abscisic acid and indol-3y1-acetic acid in the same plant tissue using 2H-labelled internal standard. In: Frigerio A (ed) Recent developments in mass spectrometry in biochemistry, medicine and environmental research, vol 8. Elsevier, Amsterdam, pp 219–231

    Google Scholar 

  • Rivier L, Saugy M (1986) Chemical ionization mass spectrometry of IAA and ABA: evaluation of negative ion detection and quantification of ABA in growing maize roots. J Plant Growth Regul, in press

    Google Scholar 

  • Salvidge RA, Wareing PL (1983) Seasonal variation in endogenous indole-3-acetic acid and abscisic acid levels in Pinus conforta Dougl. Can J Forest Res 23:123–134

    Google Scholar 

  • Sandberg G (1984) Biosynthesis and metabolism of indole-3-ethanol and indole-3-acetic acid by Pinus sylvestris L. needles. Planta 161:1–6

    Article  Google Scholar 

  • Sandberg G, Jensen E, Crozier A (1984) Analysis of 3-indole carboxylic acid in Pinus sylvestris needles. Phytochemistry 23:99–102

    Article  CAS  Google Scholar 

  • Sandberg G, Crozier A, Ernstsen A (1986) Indole-3-acetic acid and related compounds. In: Rivier L, Crozier A (eds) Principles and practice of plant hormone analysis. Academic Press, London Oxford, in press

    Google Scholar 

  • Saugy M, Pilet PE (1984) Enodgenous indol-3yl-acetic acid in stele and cortex of gravi-stimulated maize roots. Plant Sci Lett 37:93–99

    Article  CAS  Google Scholar 

  • Schneider EA, Wightman F (1978) Auxins. Phytohormones and related compounds — a comprehensive treatise. In: Letham DS, Goodwin PB, Higgins TJV (eds) The biochemistry of phytohormones and related compounds, vol 1. Elsevier/North-Holland, Amsterdam, pp 29–105

    Google Scholar 

  • Schneider EA, Kazakoff CW, Wightman F (1985) Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedlings organs. Planta 165:232–241

    Article  CAS  Google Scholar 

  • Scott TK (ed) (1984) Hormonal regulation of development II: the functions of hormones from the level of the cell to the whole plant. Encyclopedia of plant physiology new serie, vol 10. Springer, Berlin Heidelberg New York Tokyo, pp 309

    Google Scholar 

  • Seeley SD, Powell LE (1973) Gas chromatography and detection of microquantities of gibberellins and IAA as their fluorinated derivatives. Anal Biochem 58:39–46

    Article  Google Scholar 

  • Segal LM, Wightman F (1982) Gas chromatographic and GC-MS evidence for the occurrence of 3-indolylpropionic acid and 3-indolylacetic acid in seedlings of Cucurbita pepo. Physiol Plant 56:367–370

    Article  CAS  Google Scholar 

  • Smith TA (1977) Tryptamine and related compounds in plants. Phytochemistry 16:171–175

    Article  CAS  Google Scholar 

  • Sundberg B, Sandberg G, Jensen E (1985) Identification and quantification of 3-indole methanol in etiolated seedlings of Scots pine (Pinus sylvestris). Plant Physiol 77:952–955

    Article  PubMed  CAS  Google Scholar 

  • Wightman F, Lichty DL (1982) Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Pyhsiol Plant 55:17–24

    Article  CAS  Google Scholar 

  • Yokota T, Murofushi N, Takahashi N (1980) Extraction, purification and identification. In: MacMillan J (ed) Hormonal regulation of development I. Encyclopedia of plant physiology, new serie, vol 9. Springer, Berlin Heidelberg New York, pp 113–201

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rivier, L. (1986). GC-MS of Auxins. In: Linskens, H.F., Jackson, J.F. (eds) Gas Chromatography/Mass Spectrometry. Modern Methods of Plant Analysis, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82612-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82612-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82614-6

  • Online ISBN: 978-3-642-82612-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics