Skip to main content

Polyribosomes

  • Chapter
Cell Components

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 1))

Abstract

Ribosomes convert the information encoded in the nucleotide sequence of mRNA into the amino acid sequence of a protein. The translational mechanism by which this occurs involves a number of biochemical reactions (Weeks 1981). Initially, ribosomal subunits and methionyl-tRNA bind to the mRNA (initiation). This is followed by sequential “reading” of nucleotide triplets and addition of the corresponding amino acids into a nascent polypeptide (elongation). After the ribosome traverses the protein-coding region of the mRNA, it reaches a “stop” codon, which directs release of the ribosome and discharge of the completed polypeptide (termination).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldeman MR, Blobel G, Sabatini DD (1973) An improved cell fractionation procedure for the preparation of rat liver membrane-bound ribosomes. J Cell Biol 56:191–205

    Article  Google Scholar 

  • Allington RW, Brakke MK, Nelson JW, Aron CG, Larkins BA (1976) Optimum conditions for high resolution gradient analysis. Anal Biochem 73:78–92

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Key JL (1971) The effects of diethyl pyrocarbonate on the stability and activity of plant polyribosomes. Plant Physiol 48:801–805

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JE, Jones RL (1973) Osmotic regulation of oc-amylase synthesis and polyribosome formation in aleurone cells of barley. J Cell Biol 59:444–455

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Bakhuizen CEGC, Putgers T (1976) Composition and biosynthetic activity of polyribosomes associated with alfalfa mosaic virus infections. Virology 75:1–17

    Article  PubMed  CAS  Google Scholar 

  • Breen MD, Whitehead EI, Kenefick DG (1972) Requirements for extraction of polyribosomes from barley tissue. Plant Physiol 49:733–739

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ (1984) Biosynthesis, processing, and transport of storage proteins and lectins. Phil Trans R Soc Lond B Biol Sci 304:309–322

    Article  CAS  Google Scholar 

  • Chroboczek J, Witt M, Ostrowka K, Bassuner R, Puchel M, Zagorski W (1980) Seed trans-missibility of plant viruses may be modulated by competition between viral and cellular messenger. A proprosal. Plant Sci Lett 19:263–270

    Article  CAS  Google Scholar 

  • Dahlberg AE, Dingman CW, Peacock AC (1969) Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J Mol Biol 41:139–147

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Larkins BA (1972) Polyribosomes from peas II. Polyribosome metabolism during normal and hormone induced growth. Plant Physiol 52:339–345

    Article  Google Scholar 

  • Davies E, Larkins BA, Knight RH (1972) Polyribosomes from peas. An improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol 50:581–584

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Dumont JE, Vassart G (1977) Improved techniques for the isolation of intact thyroglobulin-synthesizing polysomes. Anal Biochem 80:289–292

    Article  PubMed  CAS  Google Scholar 

  • Davis E, Larkins BA (1980) Ribosomes. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 1. The plant cell. Academic Press, New York, pp 413–435

    Google Scholar 

  • Denic M, Ehrenberg L, Fedorcsak I, Solymosy F (1970) The effect of diethyl pyrocarbon-ate on the biological activity of messenger RNA and transfer RNA. Acta Chem Scand 24:3753–3755

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Bewley JD (1976) Water stress and protein synthesis IV. Response of a drought-tolerant plant. J Exp Bot 27:513–523

    Article  CAS  Google Scholar 

  • Drouet AG, Hartman CJR (1979) Requirements for extraction of polyribosomes from ly-ophilized peel tissue of climatic pear. Phytochemistry 18:545–547

    Article  CAS  Google Scholar 

  • Fourcroy P (1980) Isolation of undegraded polysomes from radish cotyledons: use of protease K and cycloheximide. Phytochemistry 19:7–10

    Article  CAS  Google Scholar 

  • Gong CS, Lovett JS (1977) Regulation of protein synthesis in Blastocladiella zoospores: factors for synthesis in nonsynthetic spores. Exp Mycol 1:138–151

    Article  CAS  Google Scholar 

  • Green FC (1981) In vitro synthesis of wheat (Triticum aestivum L.) storage proteins. Plant Physiol 68:778–783

    Article  Google Scholar 

  • Herrlich P, Schweiger M (1978) Discrimination of messenger RNA. FEBS Lett 87:1–6

    Article  PubMed  CAS  Google Scholar 

  • Herson D, Schmidt A, Seal S, Marcus A (1979) Competitive mRNA translation in an in vitro system from wheat germ. J Biol Chem 254:8245–8249

    PubMed  CAS  Google Scholar 

  • Higgins TJV (1984) Synthesis and regulation of the major proteins in seeds. In: Briggs WR, Jones RL, Walbot V (eds) Annual review of plant physiology. Annual reviews, vol 35. Palo Alto, California 35:191–221

    Google Scholar 

  • Hsiao TC (1973) Plant response to water stress. In: Briggs WR, Green PB, Jones RL (eds) Annual review of plant physiology. Annual reviews, vol 24. Palo Alto, California, pp 519–570

    Google Scholar 

  • Jackson AO, Larkins BA (1976) Influence of ionic strength, pH, and chelation of divalent metals on isolation of polyribosomes from tobacco leaves. Plant Physiol 57:5–10

    Article  PubMed  CAS  Google Scholar 

  • Key JL, Lin CY, Ceglarz E, Schoffl F (1982) The heat shock response in plants. In: Schlesinger M, Ashburner M, Tissieres A (eds) Heat shock: from bacteria to man. Cold Spring Harbor Lab 35:191–221

    Google Scholar 

  • Kraus JP, Rosenberg LE (1982) Purification of low-abundance messenger RNA from ratliver by polysome immunoadsorption. Proc Natl Acad Sei USA 79:4015–4019

    Article  CAS  Google Scholar 

  • Krystosek A, Cawthon ML, Kabot D (1975) Improved methods for purification and assay of eukaryotic messenger ribonucleic acids and ribosomes. Quantitative analysis of their interaction in a fractionated reticulocyte cell-free system. J Biol Chem 250:6077–6084

    PubMed  CAS  Google Scholar 

  • Larkins BA (1981) Seed storage proteins: characterization and biosynthesis. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 6. Proteins and nucleic acids. Academic Press, New York, pp 449–489

    Google Scholar 

  • Larkins BA, Davies E (1973) Polyribosomes from peas III. Stimulation of polysome degradation by exogenous and endogenous calcium. Plant Physiol 52:655–659

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Davies E (1975) Polyribosomes from peas V. An attempt to characterize the total free and membrane-bound polysomal population. Plant Physiol 55:749–756

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Tsai CY (1977) Dissociation of polysome aggregates by protease K. Plant Physiol 60:482–485

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Bracker CE, Tsai CY (1976a) Storage protein synthesis in maize. Isolation of zein-synthesizing polyribosomes. Plant Physiol 57:740–745

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Jones RA, Tsai CY (1976b) Isolation and in vitro translation of zein messenger ribonucleic acid. Biochemistry 15:5506–5510

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Mills AD (1975) Quantitative film detection of 3H and 14C in Polyacrylamidegels by fluorography. Eur J Biochem 56:335–341

    Article  PubMed  CAS  Google Scholar 

  • Leaver CJ, Dyer JA (1974) Caution in the interpretation of plant ribosome studies. Biochem J 144:165–167

    PubMed  CAS  Google Scholar 

  • Lin CY, Key JL (1967) Dissociation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J Mol Biol 26:237–247

    Article  PubMed  CAS  Google Scholar 

  • Loening UE (1968) The occurrence and properties of polysomes in plant tissues. In: Prid-ham JB (ed) Plant cell organelles. Academic, New York, pp 216–227

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Lab

    Google Scholar 

  • Marcus A (1974) The wheat embryo cell-free system. In: Moldave K, Grossman L (eds) Methods in enzymology, vol 30. Academic Press, New York, pp 749–761

    Google Scholar 

  • Marhol M, Cheng KL (1970) Simple ion exchange separation of magnesium from calcium and other metal ions using ethylene glyco-bis(2-aminoethyl ether) tetraacetic acid as a complexing agent. Anal Chem 42:652–655

    Article  CAS  Google Scholar 

  • McGown E, Richardson A, Henderson LM, Swan PB (1971) Anomalies in polysome profiles caused by contamination of the gradients with Cu2+ or Zn2 +. Biochim Biophys Acta 247:165–169

    PubMed  CAS  Google Scholar 

  • Mcintosh PR, O’Toole K (1976) The interaction of ribosomes and membranes in animal cells. Biochim Biophys Acta 457:171–212

    PubMed  CAS  Google Scholar 

  • Morton BE, Hirsch CA (1970) A high-resolution system for gradient analysis. Anal Bio-chem 34:544

    CAS  Google Scholar 

  • Newburn LH (1975) Isocotables. A handbook of data for biological and physical scientists. Instrumentation Specialties Company, Lincoln, Nebraska

    Google Scholar 

  • Noll H (1969) Polysomes: analysis of structure and function. In: Campbell PN, Sargent JR (eds) Techniques in protein biosynthesis. Academic Press, New York, pp 101–179

    Google Scholar 

  • Rhodes PR, Matsuda K (1976) Water stress, rapid polysome reductions and growth. Plant Physiol 58:631–635

    Article  PubMed  CAS  Google Scholar 

  • Schell MA, Wilson DB (1979) Purification of galactosidase mRNA fromSaccharomyces cerviseae by indirect immunoprecipitation. J Biol Chem 254:3531–3536

    PubMed  CAS  Google Scholar 

  • Schimke RT, Rhoads RE, McKnight GS (1974) Assay of ovalbumin mRNA in reticulocyte lysate. In: Moldave K, Grossman L (eds) Methods in enzymology, vol 30, part F. Academic Press, New York, pp 694–701

    Google Scholar 

  • Schlager C, Hoffman D, Hilz N (1969) Polyribosomes in tumor cells during induction of ribonuclease by cytostatic treatment. Hoppe-Seyler’s Z Physiol Chem 350:1017–1022

    Article  Google Scholar 

  • Shapiro DJ, Taylor JM, McKnight GS, Placious R, Gonzalez C, Kieley ML, Shimke RT (1974) Isolation of hen oviduct ovalbumin and rat liver albumin polysomes by indirect immunoprecipitation. J Biol Chem 249:3665–3671

    PubMed  CAS  Google Scholar 

  • Shore GC, Tata JR (1977) Functions for polyribosome-membrane interactions in protein synthesis. Biochim Biophys Acta 472:197–236

    PubMed  CAS  Google Scholar 

  • Smith H (1976) Phytochrome-mediated assembly of polyribosomes in etiolated bean leaves. Evidence for post-translational regulation of development. Eur J Biochem 65:161–170

    Article  PubMed  CAS  Google Scholar 

  • Stone AB (1974) A simplified method for preparing sucrose gradients. Biochem J 137:117–118

    PubMed  CAS  Google Scholar 

  • Vassart GM, Dumont JE, Cantraine FRL (1970) Simulation of polyribosome disaggregation. Biochem Biophys Acta 224:155–164

    PubMed  CAS  Google Scholar 

  • Verma DPS, Maclachlan GA, Byrne H, Ewings D (1975) Regulation and in vitro translation of messenger RNA for cellulase from auxin treated pea epicotyls. J Biol Chem 250:1019–1026

    PubMed  CAS  Google Scholar 

  • Yodkin LO (1981) Isolation and characterization of messenger RNAs for seed lectin and Kunitz trypsin inhibitor in soybeans. Plant Physiol 68:766–771

    Article  Google Scholar 

  • Weeks DP (1981) Protein biosynthesis: mechanisms and regulation. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 6. Proteins and nucleic acids. Academic Press, New York, pp 471–529

    Google Scholar 

  • Weeks DP, Marcus A (1969) Polyribosome isolation in the presence of diethyl pyrocarbon-ate. Plant Physiol 44:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • White JL, Murakishi HH (1977) Requirement for extraction of polyribosomes from plant callus cultures. Plant Physiol 59:800–802

    Article  PubMed  CAS  Google Scholar 

  • Wiegers U, Hiltz H (1971) A new method using “proteinase K” to prevent mRNA degradation during isolation from HeLa cells. Biochem Biophys Res Commun 44:513–519

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larkins, B.A. (1985). Polyribosomes. In: Linskens, HF., Jackson, J.F. (eds) Cell Components. Modern Methods of Plant Analysis, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82587-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82587-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82589-7

  • Online ISBN: 978-3-642-82587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics