Advertisement

Electronic Structure of the Insulating Forms of Polyaniline

  • B. Thémans
  • J. M. André
  • J. L. Brédas
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 63)

Abstract

We present the results of preliminary band-structure calculations on two insulating forms of polyaniline. These are the so-called form 1A (where A stands for amine and 1 denotes a reduced species): [-phenyl-NH-]x, and the so-called form 2A (where 2 denotes an oxidized species):[-phenyl-N=quinoid=N-]x Although known for a long time, polyaniline has been recently the focus of renewed interest because of its potential as a conducting polymer [1–3]. The ways of obtaining the different polyaniline forms are sketched below:

Keywords

Ionization Potential Electron Affinity Quinoid Ring Chain Geometry Occupied Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    À.G. McDiarmid et al., Mol. Cryst. Liq. Cryst. (Proceedings of the International Conference on Synthetic Metals 1984), in pressGoogle Scholar
  2. 2.
    W.R. Salaneck et al., in this bookGoogle Scholar
  3. 3.
    E.M. Genies et al., in this bookGoogle Scholar
  4. 4.
    J.M. André, L.A. Burke, J. Delhalle, G. Nicolas, and Ph. Durand, Int. J. Quantum Chem. Symo. 13, 283 (1979)Google Scholar
  5. 5.
    J.L. Brédas, R. Silbey, D.S. Boudreaux, and R.R. Chance, J. Amer. Chem. Soc., 105, 6555 (1983); J.L. Brédas, in “Handbook on Conducting Polymers”, ed. by T.J. Skotheim (Marcel Dekker, New York, in press), and references thereinCrossRefGoogle Scholar
  6. 6.
    J.A. Pople and M. Gordon, J. Amer. Chem. Soc. 89, 4253 (1967)CrossRefGoogle Scholar
  7. 7.
    B.J. Tabor, E.P. Magre, and J. Boon, Euroo. Polym. J. 7, 1127 (1981)CrossRefGoogle Scholar
  8. 8.
    J.L. Bredas, R.L. Elsenbaumer, R.R. Chance, and R. Silbey, J. Chem. Phys. 78, 5656 (1983)CrossRefADSGoogle Scholar
  9. 9.
    J.L. Brédas, R.R. Chance, R. Silbey, G. Nicolas, and Ph. Durand, J. Chem. Phys. 77, 371 (1982);CrossRefADSGoogle Scholar
  10. 9a.
    C.B. Duke, A. Paton, and W.R. Salaneck, Mol. Cryst. Liq. Cryst. 83, 177 (1982)CrossRefGoogle Scholar
  11. 10.
    B. Thémans, J.M. André, and J.L. Brédas, Mol. Cryst. Liq. Cryst., in DressGoogle Scholar
  12. 11.
    J.L. Brédas, D.S. Boudreaux, R.R. Chance, and R. Silbey, Mol. Cryst. Liq. Cryst., in pressGoogle Scholar
  13. 11a.
    D.S. Boudreaux, R.R. Chance, R.L. Elsenbaumer, J.E. Frommer, J.L. Brédas, and R. Silbey, Phys. Rev. B 31, 652 (1985)CrossRefADSGoogle Scholar
  14. 12.
    J.E. Fernandez and K. Al-Jumah, Macromolecules-17, 2935 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • B. Thémans
    • 1
  • J. M. André
    • 1
  • J. L. Brédas
    • 1
  1. 1.Laboratoire de Chimie Théorique AppliquéeFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations