Literaturhinweise

  • Wolf-Dieter Heiss
  • Curt Beil
  • Karl Herholz
  • Günter Pawlik
  • Rainer Wagner
  • Klaus Wienhard

References

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur References

Kapitel 1/Chapter1

  1. Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser MG, Comar D (1984) Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: A positron tomography study. J Cereb Blood Flow Metab 4:140–149PubMedGoogle Scholar
  2. Barrio JR (1983) Biochemical parameters on radiopharmaceutical design. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 65–76Google Scholar
  3. Bohm C, Eriksson L, Bergström M, Litton J, Sundman R, Singh M (1978) A computer assisted ringdetector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS 25:624–637Google Scholar
  4. Brownell GL, Burnham CA, Chesler DA et al. (1977) Transverse section imaging of radionuclide distributions in heart, lung and brain. In: Ter-Pogossian MM, Phelps ME, Brownell GL (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore, pp 293–306Google Scholar
  5. Bustany P, Henry JF, Sargent T, Zarifian E, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: In vivo studies with ’1CL-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 208–211Google Scholar
  6. Cho ZH, Chan JK, Eriksson L (1976) Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 23:613–622Google Scholar
  7. Derenzo SE, Budinger TF, Cahoon JL, Greenberg W L, Hues-man RH, Vuletich T (1979) The Donner 280 crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS 26:2790–2793Google Scholar
  8. Eriksson L, Bohm C, Kesselberg M et al. (1982) A four ring camera system for emission tomography of the brain. IEEE Trans Nucl Sci NS 29:539–543Google Scholar
  9. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedGoogle Scholar
  10. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. J Cereb Blood Flow Metab 5:163–178PubMedGoogle Scholar
  11. Gur D, Wolfson SK, Yonas H et al. (1982) Progress in cerebrovascular disease: Local cerebral blood flow by Xenon enhanced. CT. Stroke 13:750–758PubMedGoogle Scholar
  12. Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51PubMedGoogle Scholar
  13. Hoffman EJ, Phelps ME, Huang SC, Kuhl DE (1981) A new tomograph for quantitative positron emission computed tomography of the brain. IEEE Trans Nucl Sci 28:99–103Google Scholar
  14. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). I: Description of system. Br J Radiol 46:1016–1022PubMedGoogle Scholar
  15. Huang SC, Phelps ME, Hoffman EJ, Sideris K. Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82PubMedGoogle Scholar
  16. Ido T, Wan CN, Fowler JS, Wolf AP (1977) Fluorination with F7. A convenient synthesis of 2-deoxy-2-fluoro-Dglucose. J Org Chem 42:2341–2342Google Scholar
  17. Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80: 653–661Google Scholar
  18. Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973) Quantitative section scanning using orthogonal tangent correction. J Nucl Med 14:196–200PubMedGoogle Scholar
  19. Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM (1975) Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 36: 610–619PubMedGoogle Scholar
  20. Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, Mich TJ, Alavi A (1976) The mark IV system for radionuclide computed tomography of the brain. Radiology 121:405–413PubMedGoogle Scholar
  21. Muehllehner G, Buchin MP, Dudek JH (1976) Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci 23:528–537Google Scholar
  22. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224PubMedGoogle Scholar
  23. Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978) ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 19:635–647PubMedGoogle Scholar
  24. Raichle ME, Larson KB, Phelps ME, Grubb RL, Welch MJ, Ter-Pogossian MM (1975) In vivo measurement of brain glucose transport and metabolism employing glucose-“C. Am J Physiol 228:1936–1948PubMedGoogle Scholar
  25. Rankowitz S, Robertson JS, Higinbotham WA, Niell AM (1962) Positron scanner for locating brain tumors. IRE Int Cony Rec 9:49–56Google Scholar
  26. Reivich M, Kuhl D, Wolf A et al. (1979) The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137PubMedGoogle Scholar
  27. Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedGoogle Scholar
  28. Syrota A, Castaing M, Rougemont D, Berridge M, Baron JC, Bousser MG, Pocidalo JJ (1983) Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol 14:419–428PubMedGoogle Scholar
  29. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114:89–98PubMedGoogle Scholar
  30. Ter-Pogossian MM, Mullani NA, Hood J, Higgins CS, Currie CM (1978a) A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology 128:477–484Google Scholar
  31. Ter-Pogossian MM, Mullani NA, Hood J, Higgins CS, Ficke DC (1978b) Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain. J Comput Assist Tomogr 2:539–544Google Scholar
  32. Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL (1981) Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 5:227–239PubMedGoogle Scholar
  33. Ter-Pogossian MM, Ficke DC, Hood JT Jr, Yamamoto M, Mullani NA (1982) PETT VI: A positron emission tomo-graph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr 6:125–133PubMedGoogle Scholar
  34. Thompson CJ, Yamamoto L, Meyer E (1979) Positome II: A high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci 26:583–589Google Scholar
  35. Wagner HN Jr, Burns HD, Dannals RF et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266PubMedGoogle Scholar
  36. Welch MJ (ed) (1977) Radiopharmaceuticals and other corn-pounds labeled with short lived radionuclides. Pergamon, OxfordGoogle Scholar
  37. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)2-fluoro-2-deoxyD-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125PubMedGoogle Scholar
  38. Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14:627–637PubMedGoogle Scholar
  39. Wolf AP, Fowler JS (1983) Labeled compounds for positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 52–64Google Scholar
  40. Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Fein-del W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68GA-EDTA and “Kr. J Comput Assist Tomogr 1:43–56PubMedGoogle Scholar

Kapitel 2/Chapter 2

  1. Jones SC, Alavi A, Christman D, Montaner I, Wolf AP, Reivich M (1982) The radiation dosimetry of 2-(F18)fluoro-2deoxy-D-glucose in man. J Nucl Med 23: 613–617PubMedGoogle Scholar
  2. Litton J, Bergström M, Eriksson L, Bohm C, Blomqvist G, Kesselberg M (1984) Performance study of the PC-384 positron camera system for emission tomography of the brain. J Comput Assist Tomogr 8:74–87PubMedGoogle Scholar
  3. Wolf AP, Fowler JS (1983) Labeled compounds for positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 52–64Google Scholar
  4. Yamamoto YLL, Tenon D, Roland P, Dikllc M (1983) Regional cerebral blood flow measurement and dynamic positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 78–84Google Scholar

Kapitel 3/Chapter 3

  1. Barrio JR (1983) Biochemical parameters in radiopharmaceu118 tical design. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 65–76Google Scholar
  2. Langström B, Lundquist H (1976) The preparation of 11C-methyl jodide and its use in the synthesis of 11C-methyl-Lmethionine. Int J Appl Radiat Isotopes 27:357–363Google Scholar
  3. Stöcklin G (1984) Spezielle Syntheseverfahren mit kurzlebigen Radionukliden und Qualitätskontrolle. Handbuch der medizinischen Radiologie, Bd. XV/1 B, Kurzlebige Zyklotron-produzierte Radiopharmaka. Springer, Berlin Heidelberg New York, in pressGoogle Scholar
  4. Stöcklin G, Wolf AP (eds) (1984) Radiochemistry related to life-science. Oldenbourg, MünchenGoogle Scholar
  5. Wolf AP, Fowler JS (1983) Labeled compounds for positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 52–64Google Scholar

Kapitel 4/Chapter 4

  1. Ericson K, Bergström M, Eriksson L, Hatam A, Greitz T, Söderström CE, Widén L (1981) Positron emission tomography with 68Ga-EDTA compared with transmission computed tomography in the evaluation of brain infarcts. Acta Radio] 22: 385–398Google Scholar
  2. Herholz K, Seldon L, Pawlik G, Wienhard K, Beil C, Heiss WD (1985) Kinetics of 68-Gallium-EDTA in normal and pathologic human brain tissue measured by PET. J Nucl Med, in pressGoogle Scholar
  3. Ilsen HW, Sato M, Pawlik G, Herholz K, Wienhard K, Heiss WD (1984) (68Ga)-EDTA positron emission tomography in the diagnosis of brain tumors. Neuroradiology 26:393–398PubMedGoogle Scholar
  4. Lambrecht RM (1983) Radionuclide generators. Radiochem Acta 34:9–24Google Scholar
  5. Moerlein SM, Welch MJ (1981) The chemistry of Gallium and Indium as related to radiopharmaceutical production. Int J Nucl Med Biol 8:277–287PubMedGoogle Scholar
  6. Yen CK, Yano Y, Budinger TF, Friedland RP, Derenzo SE, Huesman RH, O’Brien HA (1982) Brain tumor evaluation using Rb-82 and positron emission tomography. J Nucl Med 23:532–537PubMedGoogle Scholar

Kapitel 5/Chapter5

  1. Ackerman RH, Correia JA, Alpert NM et al. (1981) Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 38: 537–543PubMedGoogle Scholar
  2. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981a) Non-invasive tomographic study of cerebral blood flow and oxygen metabolism in vivo: Potentials, limitations and clinical applications in cerebral ischemic disorders. Eur Neurol 20:273–284Google Scholar
  3. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P (1981b) Reversal of focal “ misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 150 positron emission tomography. Stroke 12:454--459Google Scholar
  4. Baron JC, Bousser MG, Comar D, Castaigne P (1981c) Crossed cerebellar diaschisis“ in human supratentorial brain infarction. Trans Am Neurol Ass 105:459–461Google Scholar
  5. Clark JC, Buckingham P (eds) Short lived radioactive gases for clinical use. Butterworths, LondonGoogle Scholar
  6. Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A noninvasive approach to quantitative functional brain mapping with H2180 and positron emission tomography. J Cereb Blood Flow Metab 4:329–333PubMedGoogle Scholar
  7. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: Theory, procedure and normal values. J Comput Assist Tomogr 4:727–736PubMedGoogle Scholar
  8. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778PubMedGoogle Scholar
  9. Gibbs JM, Wise RJS, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet I:310–314Google Scholar
  10. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24:782–789PubMedGoogle Scholar
  11. Huang SC, Carson RE, Hoffman EJ, Carson J, MacDonald N, Barrio JR, Phelps ME (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 150-water. J Cereb Blood Flow Metab 3:141–153PubMedGoogle Scholar
  12. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343PubMedGoogle Scholar
  13. Lammertsma AA, Jones T (1983) Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain. I. Description of the method. J Cereb Blood Flow Metab 3:416–424PubMedGoogle Scholar
  14. Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet II:1113–1115Google Scholar
  15. Lebrun-Grandié P, Baron JC, Soussaline F, Loch’h C, Sastre J, Bousser MG (1983) Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch Neurol 40:230–236PubMedGoogle Scholar
  16. Leenders KL, Gibbs JM, Frackowiak RSJ, Lammertsma AA, Jones T (1984) Positron emission tomography of the brain: New possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol 23:1–38PubMedGoogle Scholar
  17. Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2: 321–335PubMedGoogle Scholar
  18. Perlmutter JS, Raichle ME (1984) Pure hemidystonia with basal ganglion abnormalities on positron emission tomography. Ann Neurol 15: 228–233PubMedGoogle Scholar
  19. Phelps ME, Huang SC, Hoffman EJ, Kuhl DE (1979) Validation of tomographic measurement of cerebral blood volume with C-11 labeled carboxyhemoglobin. J Nucl Med 20:328–334PubMedGoogle Scholar
  20. Powers WJ, Grubb RL jr, Raichle ME (1984) Physiological responses to focal cerebral ischemia in humans. Ann Neurol 16:546–552PubMedGoogle Scholar
  21. Raichle ME, Grubb RL, Gado MH, Eichling JO, Ter-Pogossian MM (1976) Correlation between regional cerebral blood flow and oxidative metabolism. Arch Neurol 33: 523–526PubMedGoogle Scholar
  22. Reiman EM, Raichle ME, Butler FK, Herscovitch P, Robins E (1984) A focal brain abnormality in panic disorder, a severe form of anxiety. Nature 310:683–685PubMedGoogle Scholar
  23. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen-15. Radiology 93:31–40PubMedGoogle Scholar
  24. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ (1970) The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest 49:381–391PubMedGoogle Scholar
  25. Volpe JJ, Herscovitch P, Perlman JM, Raichle ME (1983) Positron emission tomography in the newborn: Extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral in-volvement. Pediatrics 72:589–601PubMedGoogle Scholar
  26. Wise JS, Bernardi S, Frackowiak RSJ, Legg NJ, Jones T (1983) Serial observations on the pathophysiology of acute stroke. Brain 106:197–222PubMedGoogle Scholar

Kapitel 6/Chapter6

  1. Diksic M, Galinier JL, Marshall H, Yaffe L (1979) Preparation of carrier-free Kr by (p, xn) reactions on natural bromine. Int J Appl Radiat Isot 28:885–888Google Scholar
  2. He Y, Qaim SM, Stöcklin G (1982) Excitation functions for 3He-particle induced nuclear reactions on 76Se, 77Se and “’Se: Possibilities of production of ”Kr. Int J Appl Radiat Isot 33:13–19Google Scholar
  3. Holden JE, Gatley SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RJ, Polcyn RE (1981) Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 22:1084–1088PubMedGoogle Scholar
  4. Gatley SJ, Hichwa RD, Shaughnessy WJ, Nickles RJ (1981) 18F-labeled lower fluoro alkanes: Reactor-produced gaseous physiological tracers. Int J Appl Radiat Isot 32:211–214PubMedGoogle Scholar
  5. Koeppe RA, Holden JE, Polcyn RE, Nickles RJ, Gutchins GD, Weese JL (1985) Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validation. J Cereb Blood Flow Metab 5:214–223PubMedGoogle Scholar
  6. Kuhl DE, Phelps ME, Howell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of 18FDG and “NH3. Ann Neurol 8:47–60PubMedGoogle Scholar
  7. Phelps ME, Huang SC, Hoffman EJ, Selm C, Kuhl DE (1981) Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability — surface area product. Stroke 12:607–619PubMedGoogle Scholar
  8. Straatmann MG (1977) A look at 13N and 150 radiopharmaceuticals. Int J Appl Radiat Isot 28:13–20PubMedGoogle Scholar
  9. Wagner R (1984) A fast, high-yield synthesis of 18F-fluoromethane from 18F-F2. J Lab Comp Radiopharm 21:1229–1230Google Scholar
  10. Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Fein-del W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr. J Comput Assist Tomogr 1:43–56PubMedGoogle Scholar

Kapitel 7/Chapter7

  1. Alavi A, Ferris S, Wolf A et al. (1981) Determination of regional cerebral metabolism in dementia using F-18 deoxyglucose and positron emission tomography. In: Meyer JS, Lechner H, Reivich M, Ott ED, Aranibar A (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 109–112Google Scholar
  2. Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser MG, Comar D (1984) Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: A positron tomography study. J Cereb Blood Flow Metab 4:140–149PubMedGoogle Scholar
  3. Bida GT, Satyamurthy N, Barrio JR (1984) The synthesis of 2-(F-18)fluoro-2-deoxy-D-glucose using glycals. A reexamination. J Nucl Med 25:1327–1334PubMedGoogle Scholar
  4. Blomqvist G, Bergström K, Bergström M et al. (1985) Models for i1C-glucose. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 185–194Google Scholar
  5. Buchsbaum MS, Ingvar DH, Kessler R et al. (1982) Cerebral glucography with positron tomography. Use in normal subjects and in patients with schizophrenia. Arch Gen Psychiatry 39:251–259PubMedGoogle Scholar
  6. DiChiro G, Delapaz RL, Brooks RA et al. (1982) Glucose utilization of cerebral gliomas measured by (18F)fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329PubMedGoogle Scholar
  7. Ehrenkaufer RE, Potocki JE, Jewett DM (1984) Simple synthesis of F-18-labeled-2-fluoro-2-deoxy-D-glucose: Concise communication. J Nucl Med 25:333–337PubMedGoogle Scholar
  8. Ehrin E, Westman E, Nilsson SO, Nilsson JLG, Larson CM, Tillberg JE, Malmborg P (1980) A convenient method for production of 11C-labeled glucose. J Label Comp Radiopharm 17:453–461Google Scholar
  9. Engel J, Kuhl DE, Phelps ME (1982) Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218:64–66PubMedGoogle Scholar
  10. Farkas T, Wolf AP, Jaeger J, Brodie JD, Christman DR, Fowler JS (1984) Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study. Arch Gen Psychiatry 41: 293–300PubMedGoogle Scholar
  11. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, DiChiro G (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology (Cleveland) 33:961–965Google Scholar
  12. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. J Cereb Blood Flow Metab 5:163–178PubMedGoogle Scholar
  13. Greenberg JH, Reivich M, Alavi A et al. (1981) Metabolic mapping of functional activity in human subjects with the(1SF)-fluorodeoxyglucose technique. Science 212: 678–680PubMedGoogle Scholar
  14. Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51PubMedGoogle Scholar
  15. Hawkins RA, Phelps ME, Mazziotta JC, Kuhl DE (1983) A study of Wilson’s disease with F-18- FDG and positron tomography. J Cereb Blood Flow Metab 3 [Suppl 1]: 5498–5499Google Scholar
  16. Heiss WD, Ilsen HW, Wagner R, Pawlik G, Wienhard K (1983) Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 162–168Google Scholar
  17. Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223PubMedGoogle Scholar
  18. Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K (1985) Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res 327:362–366PubMedGoogle Scholar
  19. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE (1978) Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-FDG, 2-FDM and 14C-2-FDG. J Label Comp Radiopharm 14:175–183Google Scholar
  20. Kloster G, Müller-Platz C, Laufer P (1981) 3-11C-methyl-Dglucose. A potential agent for regional cerebral glucose utilization studies: Synthesis, chromatography and tissue distribution in mice. J Label Comp Radiopharm 18:855–863Google Scholar
  21. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980a) Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60Google Scholar
  22. Kuhl DE, Engel J, Phelps ME, Selin C (1980b) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348–360Google Scholar
  23. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434PubMedGoogle Scholar
  24. Kuhl DE, Metter EJ, Riege WH, Hawkins RA, Mazziotta JC, Phelps ME, Kling AS (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab 3 [Suppl 1]:S494–S495Google Scholar
  25. Leon MJ de, Ferris SH, George AE, Reisberg B, Christman Dr, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3:391–394PubMedGoogle Scholar
  26. Levy S, Elmaleh DR, Livni E (1982) A new method using anhydrous 18F-fluoride to radiolabel 2-FDG. J Nucl Med 23:918–922PubMedGoogle Scholar
  27. MacGregor R, Fowler J, Wolf AP, Shiue CJ et al. (1981) A synthesis of 2-deoxy-D-(1-11C)glucose for regional metabolic studies: Concise communication. J Nucl Med 22:800–803PubMedGoogle Scholar
  28. Mazziotta JC, Engel J jr (1984) The use and impact of positron computed tomography scanning in epilepsy. Epilepsia 25 [Suppl 21: S86–S104Google Scholar
  29. Mazziotta JC, Phelps ME, Miller J, Kuhl DE (1981) Tomo-graphic mapping of human cerebral metabolism: Normal unstimulated state. Neurology 31:503–515Google Scholar
  30. Metter EJ, Riege WH, Kuhl DE, Phelps ME (1984) Cerebral metabolic relationship for selected brain regions in healthy adults. J Cereb Blood Flow Metab 4:1–7PubMedGoogle Scholar
  31. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro2-deoxy-D-glucose: Validation of method. Ann Neurol 6: 371–388PubMedGoogle Scholar
  32. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2:113–162PubMedGoogle Scholar
  33. Phelps M, Mazziotta J, Baxter L, Gerner R (1985) Study design in the investigation of affective disorders: Problems and strategies. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 457–470Google Scholar
  34. Raichle ME, Welch MJ, Grubb RL jr, Higgins CS, Ter-Pogossian MM, Larson KB (1978) Measurement of regional substrate utilization rates by emission tomography. Science 199:986–987PubMedGoogle Scholar
  35. Rapoport SI, Duara R, Horwitz B et al. (1983) Brain aging in 40 healthy men: rCMRglc and correlated functional activity in various brain regions in the resting state. J Cereb Blood Flow Metab 3 [Suppl 1]:5484-S485Google Scholar
  36. Reivich M, Kuhl D, Wolf A et al. (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137PubMedGoogle Scholar
  37. Reivich M, Alavi A, Wolf A et al. (1982) Use of 2-deoxy-D-(111C)-glucose for the determination of local cerebral glucose metabolism in humans: Variation within and between subjects. J Cereb Blood Flow Metab 2:307–319PubMedGoogle Scholar
  38. Rougemont D, Baron JC, Collard P, Bustany P, Comar D, Agid Y (1983) Local cerebral metabolic rate of glucose (ICMRG1c) in treated and untreated patients with Parkinson’s disease. J Cereb Blood Flow Metab 3 [Suppl 1]: S504–S505Google Scholar
  39. Schwartz M, Duara R, Haxby J et al. (1983) Down’s syndrome in adults: brain metabolism. Science 221:781–783PubMedGoogle Scholar
  40. Shiue CY, Wolf AP (1981) The synthesis of 1-(11C)-D-glucose for the measurement of brain glucose metabolism. J Nucl Med 22:P 58Google Scholar
  41. Shiue CY, Salvadori PA, Wolf AP, Fowler JS, MacGregor RP (1982) A new improved synthesis of 2-FDG from 18F-labeled acetylhypofluoride. J Nucl Med 23:899–903PubMedGoogle Scholar
  42. Shiue CY, To KC, Wolf AP (1983) A rapid synthesis of 2deoxy-2-fluoro-D-glucose from Xenon difluoride suitable for labeling with 18F. J Label Comp Radiopharm 20:157–162Google Scholar
  43. Sodd S, Firnau G, Garnett ES (1983) Radiofluorination with Xenon difluoride: A new high yield synthesis of 18F-2FDG. Int J Appl Radiat Isot 34:743–745Google Scholar
  44. Sokoloff L, Reivich M, Kennedy C et al. (1977) The 14Cdeoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedGoogle Scholar
  45. Tewson TJ (1983) Synthesis of N.C.A. fluorine-18 2-fluoro-2deoxy-D-glucose. J Nucl Med 24:718–721PubMedGoogle Scholar
  46. Vyska K, Kloster G, Feinendegen LE et al. (1983) Regional perfusion and glucose uptake determination with 11Cmethyl-glucose and dynamic positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 169–180Google Scholar
  47. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)2-fluoro-2-deoxyD-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125PubMedGoogle Scholar
  48. Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14:627–637PubMedGoogle Scholar

Kapitel 8/Chapter8

  1. Barrio JR, Keen R, Chugani H, Ackerman R, Chugani DC, Phelps ME (1983a) L-(1-C-11)phenylalanine for the determination of cerebral protein synthesis rates in man with positron emission tomography. J Nucl Med 24:P70Google Scholar
  2. Barrio JR, Keen RE, Ropchan JR, MacDonald NS, Baumgartner FJ, Padgett HC, Phelps ME (1983b) L-(111C)Leucine: Routine synthesis by enzymatic resolution. J Nucl Med 24:515–521Google Scholar
  3. Bergström M, Collins VP, Ehrin E et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using (68GA)EDTA, (11C)glucose, and (11C)methionine. J Comput Assist Tomogr 7: 1062–1066PubMedGoogle Scholar
  4. Bustany P, Henry JF, Sargent T, Zarifian E, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: in vivo studies with 11C-Lmethionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 208–211Google Scholar
  5. Bustany P, Henry JF, Rotrou J de et al. (1985) Correlations between clinical state and positron emission tomography measurement of local brain protein synthesis in Alzheimer’s dementia, parkinson’s disease, schizophrenia, and gliomas. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 241–249Google Scholar
  6. Comar D, Cartron JC, Maziere M, Moranzano C (1976) Labeling and metabolism of methionine-methyl-11C. Eur J Nucl Med 1:11–14PubMedGoogle Scholar
  7. Fowler JS, Wolf AP (1982) Synthesis of carbon-11, fluoride-18 and nitrogen-13 labeled radiotracers for biomedical applications. NAS-NS 3101, Nat Acad Sci, Nat Res Counc, Nat Techn Inform SeryGoogle Scholar
  8. Phelps ME, Barrio JR, Huang SC, Keen RE, Chugani H, Mazziotta JC (1984) Criteria for the tracer kinetic mea-surement of cerebral protein synthesis in humans with positron emission tomography. Ann Neurol 15 [Suppl]:S192–5202PubMedGoogle Scholar
  9. Smith CB, Davidsen L, Deibler G et al. (1980) A method for the determination of local rates of protein synthesis in brain. Trans Am Soc Neurochem 11:94Google Scholar
  10. Washburn LC, Sun TT, Byrd BL et al. (1979) High-level production of 11C carboxyl-labeled amino acids. In: Sorenson JA (ed) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 767–777Google Scholar

Kapitel 9/Chapter9

  1. Berridge M, Comar D, Roeda D, Syrota A (1982) Synthesis and in vivo characteristics of (2-11C)5,5-dimethyloxazolidine-2,4-dione (DMO). Int J Appl Radiat Isot 33: 647–651PubMedGoogle Scholar
  2. Brooks DJ, Lammertsma AA, Beaney RP, Leenders KL, Buckingham PD, Marshall J, Jones T (1984) Measurement of regional cerebral pH in human subjects using continuous inhalation of “CO, and positron emission tomography. J Cereb Blood Flow Metab 4:458–465PubMedGoogle Scholar
  3. Diksic M (1984) A new, simple, high-yield synthesis of “no carrier added” 11C-labeled DMO. Int J Appl Radiat Isot 35:1035–1038PubMedGoogle Scholar
  4. Ginos JZ, Tilbury RS, Haber MT, Rottenberg DA (1982) Synthesis of (2-11C)5,5-dimethyl-2,4-oxazolidinedione for studies with positron tomography. J Nucl Med 23:255–258PubMedGoogle Scholar
  5. Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet II:1113–1115Google Scholar
  6. Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10PubMedGoogle Scholar
  7. Raichle ME, Grubb RL, Higgins CS (1979) Measurement of brain tissue carbon dioxide content in vivo by emission tomography. Brain Res 166:413–417PubMedGoogle Scholar
  8. Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L, Dhawan V, Jarden JO (1985a) In vivo measurement of brain tumor pH using (11C)DMO and positron emission tomography. Ann Neurol 17:70–79Google Scholar
  9. Rottenberg DA, Ginos JZ, Kearfott KJ (1985b) Assessment of regional cerebral acid-base status in man using 11Cdimethyloxazolidinedione and positron emission tomography. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 279–284Google Scholar
  10. Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedGoogle Scholar
  11. Syrota A, Castaing M, Rougemont D et al. (1985) Regional tissue pH and oxygen metabolism in human cerebral infarction studied with positron emission tomography. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 285–303Google Scholar
  12. Yamamoto YL, Hakim AM, Diksic M et al. (1985) Focal flow disturbances in acute strokes: Effects on regional metabolism and tissue pH. In: Heiss WD (ed) Functional mapping of the brain in vascular disorders. Springer, Berlin Heidelberg New York TokyoGoogle Scholar

Kapitel 10/Chapter10

  1. Baron JC, Comar D, Crouzel C et al. (1983a) Brain regional pharmacokinetics of 11C-labeled diphenylhydantoin and pimozide in man. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 212–224Google Scholar
  2. Baron JC, Roeda D, Munari C, Crouzel C, Chodkiewicz JP, Comar D (1983b) Brain regional pharmacokinetics of 11C-labeled diphenylhydantoin: Positron emission tomog-raphy in humans. Neurology (Cleveland) 33: 580–585Google Scholar
  3. Berger G, Mazière M, Prenant C, Sastre J, Syrota A, Comar D (1982) Synthesis of 11C propranolol. J Radioanal Chem 74:301–306Google Scholar
  4. Berridge M, Comar D, Crouzel C, Baron JC (1983) 11C labeled ketanserin: A selective serotonin S2 antagonist. J Lab Comp Radiopharm 20:73–78Google Scholar
  5. Burns HD, Dannals RF, Langström B, Ravert HT (1984) 3-N-(11C)methylspiperone, a ligand binding to dopamine receptors: Radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25:1222–1227PubMedGoogle Scholar
  6. Chirakal R, Firnau G, Couse J, Garnett ES (1984) Radio-fluorination with 18F-labeled acetyl hypofluorite: (18F)L6-fluorodopa. Int J Appl Radiat Isot 35:651–653Google Scholar
  7. Diksic M, Farrokhzad S, DiRaddo P (1984) Use of silane for introduction of 18F into organic compounds. J Lab Comp Radiopharm 21:1187–1188Google Scholar
  8. Firnau G, Chirakal R, Garnett ES (1984) Aromatic radio-fluorination with (18F)fluorine gas: 6-(’EF)fluoro-L-dopa. J Nucl Med 25:1228–1233PubMedGoogle Scholar
  9. Frost JJ, Dannals RF, Duelfer T, Burns HD, Ravert HT, Langström B, Balasubramanian V (1984) In vivo studies of opiate receptors. Ann Neurol 15 [Suppl]:S85–S92PubMedGoogle Scholar
  10. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedGoogle Scholar
  11. Garnett ES, Nahmias C, Firnau G (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neural Sci 11:174–179Google Scholar
  12. Inoue Y, Wagner HN Jr, Wong DF et al (1985) Atlas of dopamine receptor images (PET) of the human brain. J Comput Assist Tomogr 9:129–140PubMedGoogle Scholar
  13. Mazière M, Godot JM, Menini C, Berger G, Comar D (1980) Benzodiazépines 11C: Marquarge et pharmacocinetique in vivo. Int J Nucl Med 7:204Google Scholar
  14. Mazière M, Berger G, Godot JM, Prenant C, Sastre J, Comar D (1983) 11C-methiodide quinuclidinyl benzilate a muscarinic antagonist for in vivo studies of myocardial muscarinic receptors. J Radioanal Chem 76:305–309Google Scholar
  15. Mazière M, Hantraye P, Prenant C, Sastre J, Comar D (1984) RO 15.1788-11C: A specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35:973–976PubMedGoogle Scholar
  16. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227PubMedGoogle Scholar
  17. Scholl H, Laufer P, Kloster G, Stöcklin G (1982) A potential benzodiazepine receptor-binding radiopharmaceutical for positron emission tomography: 7-(7’Br)-5-(2’-fluoro-phenyl)-1-methyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one. J Label Comp Radiopharm 19:1294–1295Google Scholar
  18. Soussaline F, Todd-Pokropek AE, Plummer D, Comar D, Loch C, Houle S, Kellershon C (1979) The physical performances of a single slice positron tomographic system and preliminary results in a clinical environment. Eur J Nucl Med 4:237–249PubMedGoogle Scholar
  19. Stöcklin G (1985) Positron-emitter-labeled compounds for probing brain metabolism and functions. Ann Neurol, in pressGoogle Scholar
  20. Wagner HN, Burns HD, Dannals RF et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266PubMedGoogle Scholar
  21. Wong DF, Wagner HN, Dannals RF et al. (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396PubMedGoogle Scholar

Kapitel 11/Chapter11

  1. Beaney RP (1984) Positron emission tomography in the study of human tumors. Semin Nucl Med 14:324–341PubMedGoogle Scholar
  2. Crawford EJ, Friedkin M, Wolf AP et al. (1982) 18F-5-fluorouridine, a new probe for measuring the proliferation of tissue in vivo. Adv Enzyme 20:3–22Google Scholar
  3. Diksic M, Farrokhzad S, Yamamoto L, Feindel W (1982) Synthesis of “no carrier added” 1,3-bis-(2-chloroethyl)nitrosourea (BCNU). J Nucl Med 23:895–898PubMedGoogle Scholar
  4. Diksic M, Sako K, Feindel W, Kato A, Yamamoto YL, Farrokhzad S, Thompson C (1984) Pharmacokinetics of positron-labeled 1,3-bis(2-chloroethyl)nitrosourea in human brain tumors using positron emission tomography. Cancer Res 44:3120–3124PubMedGoogle Scholar

Kapitel 12/Chapter12

  1. Bendel P, Lai CM, Lauterbur PC (1980) 31-P spectroscopic zeugmatography of phosphorus metabolites. J Magn Re-son 38:343–356Google Scholar
  2. Budinger TF, Lauterbur PC (1984) Nuclear magnetic resonance technology for medical studies. Science 226:288–298PubMedGoogle Scholar
  3. Eckelman WC, Reba RC, Rzeszotarski WJ et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223:291–292PubMedGoogle Scholar
  4. Gur D, Wolfson SK, Yonas H et al. (1982) Progress in cerebrovascular disease: Local cerebral blood flow by Xenon enhanced CT. Stroke 13:750–758PubMedGoogle Scholar
  5. Hilal SK, Maudsley AA, Ra JB et al. (1985) In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr 9:1–7PubMedGoogle Scholar
  6. Kaufmann L, Crooks LE (1983) Realistic expectations for the near term development of clinical NMR imaging. IEEE Trans Med Imag MI 2:57–65Google Scholar
  7. Kogure K, Ohtomo H, Matsui S, Kohno H (1985) Aims on 31P-MRI. In: Heiss WD (ed) Functional mapping of the brain in vascular disorders. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  8. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, Wu JL, Lin TH, Phelps ME (1982) Quantifying local cerebral blood flow by N-isopropyl-p-(123I)iodoamphetamine (IMP) tomography. J Nucl Med 23:196–203PubMedGoogle Scholar
  9. Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography. Stroke 12:284–288PubMedGoogle Scholar
  10. McFarland E, Koutcher JA, Rosen BR, Teicher B, Brady TJ (1985) In vivo 19F NMR imaging. J Comput Assist Tomogr 9:8–15PubMedGoogle Scholar
  11. Meyer JS, Hayman LA, Amano T et al. (1981) Mapping local blood flow of human brain by CT scanning during stable Xenon inhalation. Stroke 12:426–436PubMedGoogle Scholar
  12. Mills CM, Brant-Zawadzki M, Crooks LE et al. (1983) Nuclear magnetic resonance: Principles of blood flow imaging. Am J Neurorad 4:1161–1166Google Scholar
  13. Reo NV, Ewy CS, Siegfried BA, Ackerman JJ (1984) High-. field C-13 NMR-spectroscopy of tissue in vivo — A double-resonance surface-coil probe. J Magn Reson 58:76–84Google Scholar
  14. Schulthess GK von, Ketz E, Schubiger PA, Bekier A (1985) Regional quantitative noninvasive assessment of cerebral perfusion and function with N-isopropyl-(123I)p-iodoamphetamine. J Nucl Med 26:9–16Google Scholar
  15. Welch KMA, Helpern JA, Robertson WM, Ewing JR (1985) 31-P topical magnetic resonance measurement of high energy phosphates in normal 4nd infarcted human brain. Stroke 16:151Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Wolf-Dieter Heiss
    • 1
  • Curt Beil
    • 1
  • Karl Herholz
    • 1
  • Günter Pawlik
    • 1
  • Rainer Wagner
    • 1
  • Klaus Wienhard
    • 1
  1. 1.Max-Planck-Institut für neurologische ForschungKöln 91(Merheim)Deutschland

Personalised recommendations