The Development of Applicators for Deep-Body Hyperthermia

  • J. J. W. Lagendijk
  • A. A. C. de Leeuw
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 101)


Controllable heating at depth within the human body is one of the major constraints in the application of hyperthermia in the treatment of deep-seated tumors. Such tumors include tumors of the pancreas, poorly differentiated tumors of the brain, and the higher stages of tumors of the cervix, the stomach, the bladder, and the rectum, which are presently almost untreatable.


Dipole Source Tissue Interface Aperture Width Helical Coil Thermographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage DW, LeVeen HH, Pethig R (1983) Radiofrequency-induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models. Phys Med Biol 28(1): 31–42PubMedCrossRefGoogle Scholar
  2. Bahl IJ, Stuchly SS, Lagendijk JJW, Stuchly MA (1982) Microstrip loop radiators for medical applications. IEEE Trans Microwave Theory Tech 30(7): 1090–1093CrossRefGoogle Scholar
  3. Bakker CJG, Vriend J (1984) Multi-exponential water proton spin-lattice relaxation in biological tissues and its implications for quantitative NMR-imaging. Phys Med Biol 29(5): 509–518PubMedCrossRefGoogle Scholar
  4. Doss JD (1982) Calculation of electric fields in conductive media. Med Phys 9(4): 566–573PubMedCrossRefGoogle Scholar
  5. Doss JD, McCabe CW (1976) A technique for localized heating in tissue: an adjunct to tumor therapy. Med Instrum 10(1): 16–21PubMedGoogle Scholar
  6. Emami B, Perez C, Nussbaum G, Leybovich L (1984) Regional hyperthermia in treatment of recurrent deep-seated tumors: preliminary report. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 605–608 (Summary papers)Google Scholar
  7. Fessenden P, Lee ER, Anderson TL, Strohbehn JW, Meyer JL, Samulski TV, Marmor JB (1984) Experience with a multitransducer ultrasound system for localized hyperthermia of deep tissues. IEEE Trans Biomed Eng 31: 126–135PubMedCrossRefGoogle Scholar
  8. Gibbs FA, Sapozink MD, Gates KS, Stewart JR (1984) Regional hyperthermia with an Annular Phased Array in the experimental treatment of cancer: report of work in progress with technical emphasis. IEEE Trans Biomed Eng 31: 115–119PubMedCrossRefGoogle Scholar
  9. Guy AW (1971) Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Microwave Theory Tech 19(2): 205–214CrossRefGoogle Scholar
  10. Hand JW (1985) Thermometry in hyperthermia. In: Overgaard J (ed) Hyperthermic oncology, vol 2. Taylor a. Francis, London, pp 299–308Google Scholar
  11. Hiraoka M, Jo S, Takahashi M, Abe M (1984) Thermometry results of RF capacitive heating for human deep-seated tumors. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 609–612 (Summary papers)Google Scholar
  12. Iskander MF, Turner PF, DuBow JB, Kao J (1982) Two-dimensional technique to calculate the EM power deposition patterns in the human body. J Microwave Power 17:175–185Google Scholar
  13. Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60(6): 692–718CrossRefGoogle Scholar
  14. Lagendijk JJW (1982) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27: 17–23PubMedCrossRefGoogle Scholar
  15. Lagendijk JJW (1983) A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia. J Microwave Power 18: 367–376Google Scholar
  16. Lyons BE, Britt RH, Strohbehn JW (1984) Localized hyperthermia in the treatment of malignant brain tumours using an interstitial microwave antenna array. IEEE Trans Biomed Eng 31: 53–62PubMedCrossRefGoogle Scholar
  17. Nilsson P (1984) Physics and techniques of microwave induced hyperthermia in the treatment of malignant tumours. Thesis, University of LundGoogle Scholar
  18. Oleson J (1984) A review of magnetic induction methods for hyperthermic treatment of cancer. IEEE Trans Biomed Eng 31: 91–97PubMedCrossRefGoogle Scholar
  19. Rasmark P, Bach Andersen J (1984) Electronically steered heating of a cylinder. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 617–620 (Summary papers)Google Scholar
  20. Ruggera P, Kantor G (1984) Development of a family of RF helical coil applicators which produce transversally uniform axially distributed heating in cylindrical fat-muscle phantoms. IEEE Trans Biomed Eng 31: 98–105PubMedCrossRefGoogle Scholar
  21. Schraffordt Koops H, Oldhoff J (1983) Hyperthermic regional perfusion in high-risk stage-I malignant melanomas of the extremities. Recent Results Cancer Res 86: 223–228Google Scholar
  22. Stauffer PR, Cetas TC, Jones RC (1984) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans Biomed Eng 31: 235–251PubMedCrossRefGoogle Scholar
  23. Sterzer F, Paglione RW, Mendecki J, Botstein C (1980) RF therapy for malignancy. IEEE Spectrum 1980 Dec: 32-37Google Scholar
  24. Storm FK, Harrison WH, Elliot RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic-loop induction. J Microwave Power 16(2): 179–184Google Scholar
  25. Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9:1655–1667PubMedGoogle Scholar
  26. Turner PF (1982) Deep heating of cylindrical or elliptical masses. J Natl Cancer Inst Monogr 61: 493–495Google Scholar
  27. Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31: 106–114PubMedCrossRefGoogle Scholar
  28. Turner PF, Kumar L (1982) Computer solution for applicator heating patterns. J Natl Cancer Inst Monogr 61: 521–523Google Scholar
  29. Van der Berg PM, de Hoop AT, Segal A, Praagman N (1983) A computational model of the electromagnetic heating of biological tissue with application to hyperthermic cancer therapy. IEEE Trans Biomed Eng 30(2): 797–805PubMedCrossRefGoogle Scholar
  30. Van der Zee J, van Rhoon GC, Wike Hooley JL, Faithfull NS, Reinhold HS (1983) Whole-body hyperthermia in cancer therapy: a report of a phase I–II study. Eur J Cancer Clin Oncol 19(9): 1189–1200PubMedCrossRefGoogle Scholar
  31. Van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1984) Temperature depth profiles obtained in muscle-equivalent phantoms using the RCA27 MHz ridged waveguide. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 499–502Google Scholar
  32. Wiley JD, Webster JG (1982) Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng 29: 391–395Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • J. J. W. Lagendijk
    • 1
  • A. A. C. de Leeuw
    • 1
  1. 1.Instituut voor Radiotherapie van de RijksuniversiteitAcademisch Ziekenhuis UtrechtUtrechtThe Netherlands

Personalised recommendations