On a Multigrid Method for the Numerical Solution of Navier-Stokes Equations

  • W. Zwick
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

The multigrid methods (MGM) [1,2] were developed for the numerical solution of linear and nonlinear, ordinary and partial differential equations and integral equations by approximations using a large number of grid-points. These methods represent a compromise between the large-scale store requirement in direct solution methods and the large computer time expense in usual iteration methods.

Keywords

Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hackbusch,W.; Introduction to Multi-grid Methods for the Numerical Solution of Boundary Value Problems, Excerpt from J.A.Essers (ed.): Computational methods for turbulent, transonic, and viscous flows. Proceedings of a lecture series, March 30 to April 3, 1981, von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, Hemisphere Publishing Corporation, ’,1ashington, 1983.Google Scholar
  2. 2.
    Houwen, P.J. van der; Somraeijer, B.P.; Analysis of Chebyshev Relaxation in Multigrid Methods for Nonlinear Parabolic Differential Equations, ZAHM 63 (1983) 193–201.MATHGoogle Scholar
  3. 3.
    Schönauer,’.d.; Die Lösung der dreidimensionalen NavierStokes-Gleichungen,nit dem Differenzenverfahren, Deutsche Luft-und Raumfahrt, Forschungsbericht 70–15, 1970.Google Scholar
  4. 4.
    Amsden, A.A.; Harlow, F.H.; The SMAC method, a numerical technique for calculating incompressible flow. Los Alamos Scientific Laboratory, Report LA 4370, 1970.Google Scholar
  5. 5.
    Temam, R.; Navier-Stokes equations, North-Holland Publishing Company, Amsterdam/NewYork/Oxford, 1977.MATHGoogle Scholar
  6. 6.
    Perktold, K.; Lösung der instationbren Navier-Stokes-Gleichungen mittels der Methode der finiten Elemente. Forschungszentrum Graz, Bericht Nr. 133, 1980.Google Scholar
  7. 7.
    Zwick, W.; Zur Lösung der Navier-Stokes-Gleichung mit Hilfe eines vollimpliziten Iterationsverfahrens, ZAHM 64 (1984) 221–226.MATHMathSciNetGoogle Scholar
  8. 8.
    Ladizhenskaya, O.A.: Matematicheskie voprosi dinamiki viazkoi neszhimaemoi zhidkosti. Nauka, Moskva, 1970.Google Scholar
  9. 9.
    Samarskiy, A.A.; Nikolaev, E.S,:Metodi reshenia setoch nikh uravneniy, Nauka, Moskva, 1978.Google Scholar
  10. 10.
    Peyret, R.; Taylor, T.D.; Computational Methods for Fluid flow. Springer-Verlag New York Heidelberg Berlin, 1983.Google Scholar
  11. 11.
    Eisenstat, S.C.; Gursky, M.C.; Schultz, M.M.; Sherman,A.H.; Yale Sparse Matrix Package II. The Nonsymmetric Codes, Research Rep. 114, Yale University, Department of Computer Sciences.Google Scholar
  12. 12.
    Nadeborn, W.; Realisierung eines Aufspaltungsverfahrens mit dynamischer Iterationsparametersteuerung. Matematicheskie modeli v teorii teplo-i massoobmena, materiali mezhdunarodnoi shkoli-seminara, Akademia nauk BSSR, Institut teplo-massoobmena, Minsk, 1982.Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • W. Zwick
    • 1
  1. 1.Institut für MechanikAkademie der Wissenschaften der DDRDeutschland

Personalised recommendations