An Experimental Study of the Structure and Spreading of Turbulent Spots

  • Per-Ake Lindeerg
  • E. Magnus Fahlgren
  • P. Henrik Alfredsson
  • Arne V. Johansson
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Turbulent spots in a free surface water table flow were studied. Flow visualization suggested that the reported differences in shape between the water table and laminar boundary-layer spots may be ascribed to relaminarization of the front part of the former. Linear stability analysis of velocity profiles measured just outside the “wing-tip” of the spot indicated a reduced stability of the flow in this region as compared to the undisturbed laminar flow, which may be seen as a support for a growth-by-destabilization concept. The stability of the flow in this region was also examined in a more direct way by introducing a small secondary disturbance near the wing-tip of the spot.


Water Table Wall Shear Stress Spreading Rate Front Part Laminar Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emmons, H.W.:1951 J. Aero. Sci. 18, 490.MATHMathSciNetGoogle Scholar
  2. 2.
    Mitchner, M.:1954 J. Aero. Sci. 21, 350.Google Scholar
  3. 3.
    Elder, J.W.:1960 J. Fluid Mech. 9, 235.CrossRefMATHADSGoogle Scholar
  4. 4.
    Cantwell, B.; Coles, D. & Dimotakis, P.: 1978 J. Fluid Mech. 87, 641.CrossRefADSGoogle Scholar
  5. 5.
    Gad-El-Hak,M., Blackwelder, R.F. & Riley, J.J. 1981 J. Fluid Mech. 110, 73CrossRefADSGoogle Scholar
  6. 6.
    Bertshy, J.R. & Abernathy, F.H.:1977 In Proc. Second International Conf. on Drag Reduction (BHRA), Univ. Cambridge (ed. H.S. Stephens & J.A. Clarke) p. G1–1.Google Scholar
  7. 7.
    Gustaysson, L.H. & Ogren, J.-E.:1982 Tech. Rep. 039T, Univ. of Lulea, Sweden.Google Scholar
  8. 8.
    Carlson, D.R.; Widnall, S.E. & Peeters, M.F.: 1982 J. Fluid Mech. 121, 487.CrossRefADSGoogle Scholar
  9. 9.
    Schubauer, G.B. & Kiebanoff, P.S.:1956 NACA Rep. 1289.Google Scholar
  10. 10.
    Corrsin, S. & Kistler, A.L.: 1955 NACA Rep. 1244.Google Scholar
  11. 11.
    Wygnanski, I.; Haritonidis, J.H. & Kaplan, R.E.:1979 J. Fluid Mech. 92, 505.CrossRefADSGoogle Scholar
  12. 12.
    Wygnanski, I.; Zilberman, M. & Haritonidis, J.H.: 1982 J. Fluid Mech. 123, 69.CrossRefADSGoogle Scholar
  13. 13.
    Chambers, F.W. & Thomas, A.S.W.:1983 Phys. Fluids 26, 1160.CrossRefADSGoogle Scholar
  14. 14.
    Smith, C.R. & Metzler, S.P.:1983 J. Fluid Mech. 129, 27.CrossRefADSGoogle Scholar
  15. 15.
    Chin R. W.-Y.: 1981, Ph.D-thesis Harvard Univ.Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • Per-Ake Lindeerg
    • 1
  • E. Magnus Fahlgren
    • 1
  • P. Henrik Alfredsson
    • 1
  • Arne V. Johansson
    • 1
  1. 1.Department of MechanicsThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations