Supercritical Regimes in Axisymmetric Submerged Jets

  • M. A. Goldshtik
  • V. N. Shtern
  • E. M. Zhdanova
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The bifurcation of secondary regimes in jet flows of a viscous incompressible fluid is studied. Initial axisymmetric submerged jets having velocity distributions from Schlichting’s self-similar profile to the “top hat” form are considered as parallel. In the latter case the secondary regime was found to include stationary rotation around the jet axis. The rotation is generated in jets with high-gradient profiles and is absent in the case of the self-similar distribution.


Couette Flow Neutral Curve Axial Velocity Profile Supercritical Regime Azimuthal Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge: The University press 1970.Google Scholar
  2. 2.
    Schlichting, H.: Grenzschicht - Theorie. Karlsruhe: Verlag G.Braun 1964.Google Scholar
  3. 3.
    Morris, P.J.: The spatial viscous instability of axisymmetric jets. J. Fluid Mech. 77 (1976) 511–529.CrossRefMATHADSGoogle Scholar
  4. 4.
    Kamber, T.: The stability of an axisymmetric jet with a parabolic profile. J. Phys. Soc. Japan 26 (1969) 566.CrossRefADSGoogle Scholar
  5. 5.
    Batchelor, G.K.; Gill, A.E.: Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (1962) 529–551.CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    Yudovich, V.I.: On self-oscillation onset in a fluid. Soviet Appl. Mech. and Mech. 35 (1971) 638–655.Google Scholar
  7. 7.
    Goldshtik, M.A.; Shtern, V.N. Hydrodynamic stability and turbulence. Novosibirsk: Nauka 1977 (in Russian).Google Scholar
  8. 8.
    Lyubimov,D.V.; Putin,G.F.: Supercritic motions in a cubic cavity. In.: Hydrodynamics, Perm: University press (1977) 15–26.Google Scholar
  9. 9.
    Babenko, K.I.; Affendikov, A.L.; Iuriev, S.P.: On the bifurcation of Couette flow between rotating cylinders in the case of double eigenvalue. Soviet Doklady 266 (1982) 73–78.Google Scholar
  10. 10.
    Goldshtik, M.A.; Zhdanova, E.M.; Shtern, V.N.: Onset of self-rotation in a submerged jet. Soviet Doklady (1984), in the press.Google Scholar
  11. 11.
    Crow, S.C.; Champagne, F.M.: Orderly structure in jet turbulence. J. Fluid Mech. 48 (1971) 547–591.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • M. A. Goldshtik
    • 1
  • V. N. Shtern
    • 1
  • E. M. Zhdanova
    • 1
  1. 1.Institute of ThermophysicsNovosibirskUSSR

Personalised recommendations