Skip to main content

On Converting Optimal Control Problems into Nonlinear Programming Problems

  • Conference paper
Computational Mathematical Programming

Part of the book series: NATO ASI Series ((NATO ASI F,volume 15))

Abstract

Direct solutions of the optimal control problem are considered. Two discretization schemes are proposed which are based on the parameterization of the control functions and on the parameterization of the control and the state functions, leading to direct shooting and direct collocation algorithms, respectively. The former is advantageous for problems with unspecified final state, the latter for prescribed final state and especially for stiff problems. The sparsity of the Jacobian matrix of the constraints and the Hessian matrix of the Lagrangian must be exploited in the direct collocation method in order to be efficient. The great advantage of the collocation approach lies in the availability of analytical gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P., Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982.

    Google Scholar 

  2. Hestenes, M.R., Calculus of Variations and Optimal Control Theory, Wiley, New York, 1966.

    Google Scholar 

  3. Cesari, L., Optimization — Theory and Applications, Springer, New York, 1983.

    Google Scholar 

  4. Childs, B., Scott, M., Daniel, J.W., Denman, E., Nelson, P. (eds.), Codes for Boundary-Value Problems in Ordinary Differential Equations, Springer, Berlin, 1979.

    Google Scholar 

  5. Bryson, A.E., Ho, Y.C., Applied Optimal Control, Ginn & Company, Waltham, 1969.

    Google Scholar 

  6. Canon, M.D., Cullum, CD., Polak, E., Theory of Optimal Control and Mathematical Programming, McGraw-Hill, New York, 1970.

    Google Scholar 

  7. Tabak, D., Kuo, B.C., Optimal Control by Mathematical Programming, Prentice-Hall, Englewood Cliffs, 1971.

    Google Scholar 

  8. Brusch, R.G., Schappelle, R.H., “Solution of Highly Constrained Optimal Control Problems Using Nonlinear Programming”, AIAA Journal 11 (1973) 135-136.

    Google Scholar 

  9. Kamm, J.L., Johnson, I.L., “Nonlinear Programming Approach for Optimizing Two-Stage Lifting Vehicle Ascent to Orbit”, Automatica 9 (1973) 713-720.

    Google Scholar 

  10. Neuman, C.P., Sen, A., “A Suboptimal Control Algorithm for Constrained Problems Using Cubic Splines”, Automatica 9 (1973) 601-613.

    Google Scholar 

  11. Gill, P.E., Murray, W., “The Numerical Solution of a Problem in the Calculus of Variations”, in: Bell, D.J. (ed.), Recent Mathematical Developments in Control, Academic Press, London, 1973.

    Google Scholar 

  12. Rader, J.E., Hull, D.G., “Computation of Optimal Aircraft Trajectories Using Parameter Optimization Methods”, J. Aircraft 12 (1975) 864-866.

    Google Scholar 

  13. Hager, W.W., “Rates of Convergence for Discrete Approximations to Unconstrained Control Problems”, SIAM J. Numer. Anal. 13 (1976) 449-472.

    Google Scholar 

  14. Kraft, D., “Optimierung von Flugbahnen mit Zustandsbeschränkungen durch Mathematische Programmierung”, DGLR Jahrbuch, München, 1976.

    Google Scholar 

  15. Mantell, J.B., Lasdon, L.S., “A GRG Algorithm for Econometric Control Problems”, Annals of Economic and Social Measurement 6 (1978) 581-597.

    Google Scholar 

  16. Sargent, R.W.H., Sullivan, G.R., “The Development of an Efficient Optimal Control Package”, in: Stoer, J. (ed.), Optimization Techniques, Springer, Berlin, 1978.

    Google Scholar 

  17. Jonson, H., “A Newton Method for Solving Non-Linear Optimal Control Problems with General Constraints”, Linköping Studies in Science and Technologie 104, Linköping, 1983.

    Google Scholar 

  18. Di Pillo, G., Grippo, L., Lampariello, F., “A Newton-Type Computing Technique for Optimal Control Problems”, Optimal Control Applications & Methods 5 (1984) 149-166.

    Google Scholar 

  19. Powell, M.J.D., “Variable Metric Methods for Constrained Optimization”, in: Bachern, A., Grötschel, M., Korte, B. (eds.), Mathematical Programming — The State of the Art, Springer, Berlin, 1983.

    Google Scholar 

  20. Schittkowski, K., Nonlinear Programming Codes, Springer, Berlin, 1980.

    Google Scholar 

  21. Stoer, J., “Foundation of Recursive Quadratic Programming Methods for Solving Nonlinear Programs”, this volume.

    Google Scholar 

  22. Neustadt, L.W., Optimization, Princeton University Press, Princeton, 1976.

    Google Scholar 

  23. Ioffe, A.D., Tichomirov, V.M., Theorie der Extremalenaufgaben, Deutscher Verlag der Wissenschaften, Berlin, 1979. Also: Theory of Extremal Problems, North Holland, Amsterdam, 1979.

    Google Scholar 

  24. Kraft, D., “Finite-Difference Gradients versus Error-Quadrature Gradients in the Solution of Parameterized Optimal Control Problems”, Optimal Control Applications & Methods 2 (1981) 191-199.

    Google Scholar 

  25. Kraft, D., “Optimal Control of a Cryogenic Windtunnel”, to appear as DFVLR Research Report, 1985.

    Google Scholar 

  26. de Boor, C., A Practical Guide to Splines, Springer, New York, 1978.

    Google Scholar 

  27. Powell, M.J.D., Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  28. Hall, C.A., Meyer, W.W., “Optimal Error Bounds for Cubic Spline Interpolation”, J. Approx. Theory 16 (1976) 105-122.

    Google Scholar 

  29. Shampine, L.F., Gordon, M.K., Computer Solution of Ordinary Differential Equations, W. H. Freeman & Company, San Francisco, 1975.

    Google Scholar 

  30. Shampine, L.F., Watts, H.A., “Practical Solution of Ordinary Differential Equations by Runge-Kutta Methods”, Sandia Laboratories, Report SAND 76-0585, Albuquerque, 1976.

    Google Scholar 

  31. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., “Computing Forward-Difference Intervals for Numerical Optimization”, SIAM J. Sci. Stat. Comput. 4 (1983) 310-321.

    Google Scholar 

  32. Kraft, D., “Comparing Mathematical Programming Algorithms Based on Lagrangian Functions for Solving Optimal Control Problems”, in: Rauch, H.E. (ed.), Control Applications of Nonlinear Programming, Pergamon Press, New York, 1980.

    Google Scholar 

  33. Maier, M., “Die numerische Lösung von Halbleitermodellen mit Hilfe des Kollokationsverfahrens PITOHP unter Verwendung einer automatischen Schrittweitenkontrolle”, Thesis, TU München, 1979.

    Google Scholar 

  34. Dickmanns, E.D., Well, K.H., “Approximate Solution of Optimal Control Problems Using Third Order Hermite Polynomial Functions”, in: Marchuk, G.I. (ed.), Optimization Techniques, Springer, Berlin, 1975.

    Google Scholar 

  35. Russel, R.D., Christiansen, J., “Adaptive Mesh Selection Strategies for Solving Boundary Value Problems”, SIAM J. Numer. Anal. 15_ (1978) 59-80.

    Google Scholar 

  36. Fehlberg, E., “Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle”, Computing 4 (1969) 93-106.

    Google Scholar 

  37. Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer, New York, 1980.

    Google Scholar 

  38. Reinsch, C., Einführung in die numerische Mathematik, Mimeographed Lecture Notes, TU München, Abt. Mathematik, 3 1977.

    Google Scholar 

  39. Kraft, D., “FORTRAN-Programme zur numerischen Lösung optimaler Steuerungsprobleme”, DFVLR-Mitt. 80-03, Köln, 1980.

    Google Scholar 

  40. Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations”, in: Watson, G. (ed.), Numerical Analysis, Springer, Berlin, 1978.

    Google Scholar 

  41. Schittkowski, K., “Powell with an Augmented Lagrangian Type Line Search Function”, Numer. Math. 38 (1981) 83–127.

    Google Scholar 

  42. Lawson, C.L., Hanson, R.J., Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, 1974.

    Google Scholar 

  43. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., “User’s Guide for SOL/QPSOL: A Fortran Package for Quadratic Programming”, TR SOL 83-7, Stanford University, Stanford, 1983.

    Google Scholar 

  44. Powell, M.J.D., “ZQPCVX A Fortran Subroutine for Convex Quadratic Programming”, DAMTP /1983/NA17, University of Cambridge, Cambridge, 1983.

    Google Scholar 

  45. Goldfarb, D., Idnani, A., “A Numerically Stable Dual Method for Solving Strictly Convex Quadratic Programs”, Math. Progr. 27 (1983) 1-33.

    Google Scholar 

  46. Fourer, R., “Staircase Matrices and Systems”, SIAM Review 26 (1984) 1-70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kraft, D. (1985). On Converting Optimal Control Problems into Nonlinear Programming Problems. In: Schittkowski, K. (eds) Computational Mathematical Programming. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82450-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82450-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82452-4

  • Online ISBN: 978-3-642-82450-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics