LP-Based Combinatorial Problem Solving

  • Karla Hoffman
  • Manfred Padberg
Conference paper
Part of the NATO ASI Series book series (volume 15)


A tutorial outline of the polyhedral theory that underlies linear-programming (LP)-based combinatorial problem solving is given Design aspects of a combinatorial problem solver are discussed in general terms. Three computational studies in combinatorial problem solving using the polyhedral theory developed in the past fifteen years are surveyed: one addresses the symmetric traveling salesman problem, another the optimal triangulation of input/output matrices and the third the optimization of large-scale zero-one linear programming problems.


Travel Salesman Problem Combinatorial Optimization Problem Linear Inequality Hamiltonian Cycle Local Problem Optimizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balas, E. & R. Martin [1980]: “Pivot and Complement-A Heuristic for 0-1 Programming” Management Science 26 (1980) 86–96.CrossRefzbMATHMathSciNetGoogle Scholar
  2. Baranyi, I., T. Van Roy, & L. Wolsey, [1983a]: “Strong Formulations for Multi-Item Capacitated Lot Sizing,” CORE Report No. 8313, Universite Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  3. Baranyi, I., T. Van Roy, & L. Wolsey, [1983b]: “Uncapacitated, Lot-Sizing: The Convex Hull of Solutions,” CORE Report No. 8314, Universite Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  4. Burkard, R. & U. Derigs, [1980]: Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, No. 184, Berlin.Google Scholar
  5. Cho, Y. D. Chinhyung, E.L. Johnson, M. Padberg M.R. Rao [1982]: “On the Uncapacitated Plant Location Problem I: Valid Inequalities and Facets,” Mathematics of Operations Research 8 (1983) 579–589.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Cho, Y. D. Chinhyung, M. Padberg & M.R. Rao, [1983]: “On the Uncapacitated Plant Location Problem II: Facets and Lifing Theorems,” Mathematics of Operations Research 8 (1983) 590–612.CrossRefzbMATHMathSciNetGoogle Scholar
  7. Chvatal, V. [1973]: “Edmonds Polytopes and Weakly Hamiltonian Graphs,” Mathematical Programming, 5(1973) 29–40.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Crowder, H. & M. Padberg [1980]: “Solving Large-Scale Symmetric Traveling Salesman Problems to Optimality,” Management Science, 26 (1980) 495–509.CrossRefzbMATHMathSciNetGoogle Scholar
  9. Crowder, H., E. Johnson, & M. Padberg [1983]: “Solving Large-Scale Linear Zero-One Programming Problems,” Operations Research, 31 (1983) 803–834.CrossRefzbMATHGoogle Scholar
  10. Dantzig, G., D.R. Fulkerson & S. Johnson [1954]: “Solution of a Large-Scale Traveling Salesman Problem” Operations Research 2(1954) 293-410.Google Scholar
  11. Edmonds, J. [1965]: “Maximum Matching and a Polyhedron with 0,1 Vertices,” Journal of Research, National Bureau of Standards, 69B (1965) 125-130.Google Scholar
  12. Fleischmann, B. [1981]: “The Traveling Salesman Problem on a Road Network,” Working paper, Fachbereich Wirtschaftswissenschaften, Universitat Hamburg, revised July 1982.Google Scholar
  13. Fleischmann, B., [1982]: “Linear-Programming Approaches to Traveling Salesman and Vehicle Scheduling Problems,” paper presented at the XI. International Symposium on Mathematical Programming, Bonn, FRG.Google Scholar
  14. Gomory, R. & T.C. Hu [1961]: “Multi-terminal Network Flows,” J. SIAM 9 (1961) 551–570.zbMATHMathSciNetGoogle Scholar
  15. Grotschel, M. & O. Holland, 1984]: “Solving Matching Problems with Linear Programming,” Preprint No. 37, Mathematisches Institut, Universitat Augsburg, FRG.Google Scholar
  16. Grotschel, M. & M. Padberg [1983]: “Polyhedral Aspects of the Traveling Salesman Problem I: Theory,” to appear in Lawler, E. et al. (eds.): The Traveling Salesman Problem, North-Holland, 1985.Google Scholar
  17. Grötschel, M., M. Junger & G. Reinelt (1982a]: “On the Acyclic Subgraph Polytope,” WP 82215-OR, Institut fur Operations Research, Universitat Bonn. (1982).Google Scholar
  18. Grötschel, M., M. Jünger & G. Reinelt [1982b]: “Facets of the Linear Ordering Polytope”. WP 82217-OR, Institut fur Operations Research, Universitat Bonn (1982).Google Scholar
  19. Grotschel, M., M. Jünger, & G. Reinelt [1983]: “Optimal Triangulation of Large Real World Input-Output Matrices,” Preprint No. 9, Mathematisches Institut, Universitat Augsburg (1983).Google Scholar
  20. Held & Karp [1970]: “The Traveling Salesman & Minimum Spanning Trees,” Part 1 Operations Research 18 (1970) 1138–1162, Part II, Mathematical Programming 1 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  21. Hong, S., [1972]: “A Linear Programming Approach for the Traveling Salesman Problem,” Ph.D. Thesis, Johns Hopkins University, Baltimore.Google Scholar
  22. Hammer, P.L., M. Padberg & U.N. Peled [1975]: “Constraint Pairing in Integer Programming INFOR-Canadian Journal of Operations Research”, 13 (1975) 68–81.zbMATHMathSciNetGoogle Scholar
  23. Johnson, E., & M. Padberg [1981]: “A Note on the Knapsack Problem with Special Ordered Sets” Operations Research Letters, 1 (1981) 38–43.CrossRefMathSciNetGoogle Scholar
  24. Johnson, E. & M. Padberg [1982]: “Degree-Two Inequalities, Clique Facets and Biperfect Graphs,” Annals of Discrete Mathematics, 16 (1982) 169–187.zbMATHMathSciNetGoogle Scholar
  25. Knuth, D. [1976]: “The Traveling Salesman Problem,” illustrative example in H. Sullivan: Frontiers of Science, from Microcosm to Macrocosm. The New York Times, February 24 (1976) 18.Google Scholar
  26. Krolak, P., Felts, W. & G. Marble, [1971]: “A Man-Machine Approach Toward Solving the Traveling Salesman Problem,” CACM 14 327-334.Google Scholar
  27. Land, A., [1979]: “The Solution of 100-City Symmetric Traveling Salesman Problems,” Research Report, London School of Economics, London.Google Scholar
  28. Leontief, W. [1936]: “Quantitative Input and Output Relations in the Economic System of the United States,” Review of Economic Systems 18 105-126.Google Scholar
  29. Leontief, W., [1951]: The Structure of the American Economy 1919-1939 Oxford University Press, New York.Google Scholar
  30. Leontief, W. [1963]: “The Structure of Development” Scientific American, 1963. Leontief, W., [1966]: Input-Output Economics, New York, Oxford University Press.Google Scholar
  31. Lin, S. & B. Kerningham, [1973]: “An Effective Heuristic Algorithm for the Traveling Salesman,” Operations Research, 21 498-516.Google Scholar
  32. Marsten, R.E. [1981]: “XMP: A Structured Library of Subroutines for Experimental Mathematical Programming,” ACM Transactions on Mathematical Software 7 (1981) 481–497.CrossRefGoogle Scholar
  33. Marsten, R. E. [1983]: “User’s Guide to IP83,” Technical Report, Dept. of Management Information Systems, University of Arizona.Google Scholar
  34. Marsten, R.E. & T.L. Morin, [1978]: “A Hybrid Approach to Discrete Mathematical Programming,” Mathematical Programming 14 (1978) 21–40.CrossRefzbMATHMathSciNetGoogle Scholar
  35. Martin, R.K. & L. Schräge [1983]: “Subset Coefficient Reduction Cuts for 0/1 Mixed Integer Programming,” Technical Report. Graduate School of Business, University of Chicago, Chicago, Illinois.Google Scholar
  36. Milioti8, T., [1976]: “Integer Programming Approaches to the Traveling Salesman Problem,” Mathematical Programming, 10 367-368.Google Scholar
  37. Miliotis, T., [1979]: “Using Cutting Planes to Solve the Symmetric Traveling Salesman Problem,” Mathematical Programming, 15 177-188.Google Scholar
  38. Padberg, M. [1973]: “On the Facial Structure of Set Packing Polyhedra,” Mathematical Programming, 5 (1973) 199–215.CrossRefzbMATHMathSciNetGoogle Scholar
  39. Padberg, M. [1974]: “Characterizations of Totally Unimodular, Balanced and Perfect Matrices,” in B. Roy (ed.): Combinatorial Programming: Methods and Applications, D. Reidel Publishing Co., Dordrecht-Holland, 1975 275-284.Google Scholar
  40. Padberg, M. [1975]: “A Note on Zero-One Programming,” Operations Research 23(1975) 833-837.Google Scholar
  41. Padberg, M. [1977]: “On the Complexity of Set Packing Polyhedra,” Annals of Discrete Mathematics, 1 (1977) 421–434.CrossRefMathSciNetGoogle Scholar
  42. Padberg, M. [1979]: “Covering, Packing and Knapsack Problems,” Annals of Discrete Mathematics, 4 (1979) 265–281.CrossRefzbMATHMathSciNetGoogle Scholar
  43. Padberg, M. & S. Hong, [1980]: “On the Symmetric Traveling Salesman Problem: A Computational Study,” Mathematical Programming Studies, 12( 1980) 78-107.Google Scholar
  44. Padberg, M. [1980]: “(l,k)-Configurations and Facets for Packing Problems,” Mathematical Programming 18 (1980) 94–99.CrossRefzbMATHMathSciNetGoogle Scholar
  45. Padberg, M. & M.R. Rao [1982]: “Odd Minimum Cut-Sets and b-Matchings”, Mathematics of Operations Research, 7 (1982) 67–80.CrossRefzbMATHMathSciNetGoogle Scholar
  46. Padberg, M. & T. Van Roy, & L. Wolsey, [1982]: “Valid Linear Inequalities for Fixed Charge Problems,” CORE Report No. 8232, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  47. Padberg, M. & M. Grötschel [1983]: “Polyhedral Aspects of the Traveling Salesman Problem II: Computation,” to appear in Lawler, E. et al. (eds.): The Traveling Salesman Problem, North-Holland, 1985.Google Scholar
  48. Singhai, J. [1982]: “Fixed Order Branch and Bound Methods for Mixed Integer Programming,” Dissertation, Dept. of Management Information Systems, University of Arizona, January, 1982.Google Scholar
  49. Thompson, G.L. & R.L. Karp [1964]: “A Heuristic Approach to Solving Traveling Salesman Problems,” Management Science 10 (1964) 225–247.CrossRefGoogle Scholar
  50. Trotter, L. [1976]: “A Class of Facets for Vertex-Packing Polyhedra,” Discrete Mathematics 12 (1975) 373–388.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Van Roy, T. & L. Wolsey, [1983]: “Valid Inequalities for Mixed 0-1 Programs,” CORE Report No. 8316, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  52. Van Roy, T. & L. Wolsey, [1984a]: “Valid Inequalities and Separation for Uncapacitated Fixed Charge Networks,” CORE Report No* 8410,. Université Catholique Louvain-la-Neuve, Belgium.Google Scholar
  53. Van Roy, T. & L. Wolsey, [1984b]: “Solving Mixed Integer Programs by Automatic Reformulation,” CORE Research No. 8432, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  54. Weyl, H. [1935]: “Elementare Theorie der konvexen Polyheder,” Comm. Math. Helv., 7 (1935), 290–306 translated in Contributions to the Theory of Games, Vol. I, 3-18, Annals of Mathematics Studies, No. 24, Princeton, 1950.CrossRefzbMATHMathSciNetGoogle Scholar
  55. Wolsey, L. [1975]: “Faces for a Linear Inequality in 0-1 Variables,” Mathematical Programming 8(1975) 165-178.Google Scholar
  56. Young, H.P. [1978]: “On Permutations and Permutation Polytopes,” Mathematical Programming Studies 8 (1978) 128–140.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Karla Hoffman
    • 1
    • 2
  • Manfred Padberg
    • 3
  1. 1.Center for Applied MathematicsNational Bureau of StandardsGaithersburgUSA
  2. 2.Operations Research DivisionNational Bureau of StandardsGaithersburgUSA
  3. 3.Graduate School of Business AdministrationNew York UniversityNew YorkUSA

Personalised recommendations