Polycrystalline Silicon in Integrated Circuits

  • H. C. de Graaff
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 57)


The use of polycrystalline silicon for integrated circuits makes it possible to produce multilayer or three-dimensional structures. Another advantage is the large range of resistivities (more than 7 orders of magnitude). Polysilicon also has drawbacks: the grain boundaries cause dopant segregation and the grain boundary states may act as trapping centres, recombination centres and scattering centres [1].


Polycrystalline Silicon Bipolar Transistor Polysilicon Layer Polysilicon Film Polysilicon Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Bartelink, Symp. Proc. Materials Research Soc., vol. 5, 249 (1982).CrossRefGoogle Scholar
  2. 2.
    J.Y.W. Seto, J.A.P. 46, 5247 (1975).Google Scholar
  3. 3.
    G. Baccarani, B. Ricco and G. Spadini, J.A.P. 49, 5565 (1978)Google Scholar
  4. 4.
    C.H. Seager and T.G. Castner, J.A.P. 49, 3879 (1978).Google Scholar
  5. 5.
    G.E. Pike and C.H. Seager, J.A.P. 50, 3415 (1979).Google Scholar
  6. 6.
    N.C.C. Lu, L. Gerzberg, C.Y. Lu and J.D. Meindl, IEEE Trans. ED-30, 137 (1983).Google Scholar
  7. 7.
    C.M.M. Wu and E.S. Yang, IEEE Trans. ED-29, 1598 (1982).Google Scholar
  8. 8.
    C.Y. Wu and W.D. Ken, Solid-State Electr. 26, 675 (1983).CrossRefGoogle Scholar
  9. 9.
    D.M. Kim, A.N. Khondker, R.R. Shah and D.L. Crosthwait, IEEE Electr. Dev. Ltrs, EDL-3, 141 (1982).CrossRefGoogle Scholar
  10. 10.
    W. Shockley, Electrons and Holes in Semiconductors, Van Nostrand, New York 1963.Google Scholar
  11. 11.
    H.C. de Graaff and M. Huybers, Solid-St.Electr. 25, 67 (1982).CrossRefGoogle Scholar
  12. 12.
    M.M. Mandurah, K.C. Saraswat, C.R. Helms and Th. J. Kamins, J.A.P. 51, 5755 (1981).Google Scholar
  13. 13.
    A. Broniatowski, J. de Phys. 43, C1–63 (1982).CrossRefGoogle Scholar
  14. 14.
    S. Hirae, M. Hirose and Y. Osaka, J.A.P. 51, 1043 (1980).Google Scholar
  15. 15.
    J. Werner, W. Jantsch, K.H. Froehner and H.J. Queisser, Proc. Mat. Res. Soc. Ann. Meeting, Boston 99 (1981).Google Scholar
  16. 16.
    M.E. Roulet and M. Duboit, Appl. Pys. Lett. 37, 737 (1980).CrossRefGoogle Scholar
  17. 17.
    M. Tanimoto, J. Murota, Y. Ohmori and N. Ieda, IEEE Trans. ED-27, 517 (1980).Google Scholar
  18. 18.
    H.K. Charles, Ch. Feldman, F.G. Satkiewicz, Techn. Digest IEDM, paper 4-4, 71, Washington (1976).Google Scholar
  19. 19.
    T.L. Chu, S.S. Chu, G.A. van der Leeden, C.J. Lin and J.R. Boyd, Solid-St. Electr. 21, 781 (1978),CrossRefGoogle Scholar
  20. 20.
    J. Manoliu and T.J. Kamins, Solid-St. Electr. 15, 1103 (1972).CrossRefGoogle Scholar
  21. 21.
    N. Dutoit and F. Sollberger, J. Electrochem. Soc. 125, 1648 (1978).CrossRefGoogle Scholar
  22. 22.
    G.E.J. Eggermont and J.G. de Groot, IEEE Electr. Dev. Ltrs, EDL-3, 156 (1982).CrossRefGoogle Scholar
  23. 23.
    CM. Wu, and E.S. Yang, Appl. Phys. Lett. 37, 945 (1980).CrossRefGoogle Scholar
  24. 24.
    H. Schaber and D. Cutter, J.A.P. 53, 8827 (1982).Google Scholar
  25. 25.
    H. Mikoshiba, IEEE J. Solid-St. Circ. SC-13, 483 (1978).CrossRefGoogle Scholar
  26. 26.
    A. Mercier, M. El Koosy, A. Le Glaunec and E. Le Tiran, J. de Phys. 43, C1–369 (1982).CrossRefGoogle Scholar
  27. 27.
    S.D.S. Malhi, R.R. Shah, H. Schichijo, R.F. Pinizotto, C.E. Chen, P.K. Chatterjee and H.W. Lam, Electr. Letters 19, 993 (1983).CrossRefGoogle Scholar
  28. 28.
    R.C. Frye and K.K. Ng, Symp. Proc. Mat. Res. Soc., 5, 275 (1982).CrossRefGoogle Scholar
  29. 29.
    S. Kawamura, N. Sasaki, T. Iwai, R. Mukai, M. Nakano and M. Takagi, Techn. Digest IEDM, paper 14.5, 364 Washington (1983).Google Scholar
  30. 30.
    M. Takagir K. Nakayama, C. Tevada and H. Kamioko, J. Jap. Soc. Appl. Phys. (suppl.) 42, 101 (1972).Google Scholar
  31. 31.
    H. Murrman and A. Glasl, 6th Int. Congr. Microelectr., Munich (1974.Google Scholar
  32. 32.
    T.H. Ning and R.D. Isaac, IEEE Trans. Electr. Dev. ED-27, 2051 (1980).CrossRefGoogle Scholar
  33. 33.
    H.C. de Graaff, J.W. Slotboom and A. Schmitz, Solid St. Electr. 20, 515 (1977).CrossRefGoogle Scholar
  34. 34.
    H.C. de Graaff and J.G. de Groot, IEEE Trans, Electr. Dev. ED-26, 1771 (1979).CrossRefGoogle Scholar
  35. 35.
    A.A. Eltoukhy and D.J. Roulston, IEEE Trans. Electr. Dev. ED-29, 1862 ((1982).CrossRefGoogle Scholar
  36. 36.
    H.G.R. Maas and J.A. Appels, submitted to IEEE Electr. Dev. Letrs.Google Scholar
  37. 37.
    W.J.M.J. Josquin, P.R. Boudewijn and Y. Tamminga, Appl. Phys. Lett. 43, 960 (1983).CrossRefGoogle Scholar
  38. 38.
    K.L. Wang, T.C. Holloway, R.F. Pinizzotto, Z.P. Sobczak, W.R. Hunter and A.F. Tasch, Jr., IEDM Techn. Digest, paper 3.3, 58, Washington (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. C. de Graaff
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations