Advertisement

Sets of Multiple Cracks in Solids with Application to the Fatigue Life and Reliability Prediction

  • V. V. Bolotin
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

A generalized probabilistic model is developed for the fatigue life and reliability prediction of structures containing a set of non-interacting cracks. The main point is a comprehensive use of the concept of Poisson random sets throughout all the stages of the analysis. The model includes both initial and newborn cracks and crack-wise defects. Macrocracks initiation is considered as a result of dispersed damage accumulation. Inspection, repair and replacement of structural elements are included into the consideration also. The resuts may be interpreted as a fargoing generalization of Weibull distribution [1].

Keywords

Fatigue Life Cumulative Distribution Function Weibull Distribution Initial Crack Reliability Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weibull, W.: A statistical theory of strength of materials. Proc. Roy. Swedish Inst.Engng Res., Stockholm, 151 (1939).Google Scholar
  2. 2.
    Болотин, B. B.: Расределеление времен до разрушенения при случайных. Прикладная механика и техничоокая Физика (1980) 149–158Google Scholar
  3. 3.
    Болотин, B. B.: Статистические методы B строитөлъной механикө. Москва: Стройиздат 1961 (І-е изд.) 1965 (2-е изд.). Eng. transl.: Statistical methods in structural mechanics. San Francisco: Holden-Day 1969. German transi.: Wahrschheinlichkeitsmethoden zur Berechnung von Konstruktionen. Berlin: VEB Verlag fur Bauwesen 1981.Google Scholar
  4. 4.
    Болотин, B. B.: методы төории вөроятностей и теории надеҗности в расчетах сооруҗений. Москва: Стройиздат 1971 (І-е изд.) 1982 (2-e изд.). Engl.transi.: Bolotin, V.V.: Application of the methods of the theory of probability and the theory of reliability to analysis of structures. Springfield: NTIS US Dept of Commerce, 1974.Google Scholar
  5. 5.
    Bolotin, V.V.: Reliability of Structures. In: Trends in Solid Mechanics, Delft University Press 1979.Google Scholar
  6. 6.
    Болотин, B. B.: о σезопасних размерах трөшин при случайном нагруҗении. Известия АН СССР, Механика твердого тела (1980) 124–130Google Scholar
  7. 7.
    Когаев, B. П. :Расчеты на прочность при нагрузках, переменних во времени. Москва: Машиностроение 1977, 232.Google Scholar
  8. 8.
    Болотин, B. B.: О прогнозировании надеҗностд и долговөчности машин. Машиноведение (1977) 86–93.Google Scholar
  9. 9.
    Болотин, B. B.: Случайные колеσания упругих систем. Москва: Наука 1979.Google Scholar
  10. 10.
    Панасюк, B. B., Андройкив, А.Е., Ковчик, С.Е.: Методы опөнки трешиностоикости конструкпионых материалов. Киев: Наукова думка 1977.Google Scholar
  11. 11.
    Dover, W.D., Hibberd, R.D.: The influence of mean stress and amplitude distribution on random load fatigue crack growth. Engng Fracture Mech. 9 (1977) 251–263.CrossRefGoogle Scholar
  12. 12.
    Mc Cartney, L.N, Cooper, R.M.: A new method of analysing fatigue crack propagation data. Engng Fracture Mech. 9 (1979) 273–290.CrossRefGoogle Scholar
  13. 13.
    Bolotin, V.V.: Stochastic model of fracture with applications to the reliability theory. In: Structural Safety and Reliability/Eds. Moan, T., Shinozuka, M. Amsterdam, Oxford, New York: Elsevier 1981, 31–56.Google Scholar
  14. 14.
    Болотин, B. B.:уравнөния роста усталостных трешин. Известия АН СССР, Механика твердого төла, 4 (1983) 153–160.Google Scholar
  15. 15.
    Graham, T.W., Tetelman, A.S.: The use of crack size distribution and crack detection for determining the probability of fatigue failure. AIAA/ASME/SAE 15-th Structures, Structural Dynamics and Materials Conference. AIAA Paper N 74394 (1974).Google Scholar
  16. 16.
    Yang, J.-N., Trapp, W.J.: Reliability analysis of aircraft structures under random loading and periodic inspection. AIAA Journal 12 (1974) 1623–1630.Google Scholar
  17. 17.
    Jouris, G.M., Shaffer, D.H.: A procedure for estimating the probability of flaw nondetection. Nucl.Engng and Design 48 (1978) 517–521.CrossRefGoogle Scholar
  18. 18.
    Gallagher, J.P., Grandt, A.F.Jr., Crane, R.L.: Tracking potentional crack growth damage. Journal of Aircraft (1978) 435–442.Google Scholar
  19. 19.
    Heller, R.A., Stevens, G.H.: Bayesian estimation of crack initiation times from service data. Journal of Aircraft 15 (1978) 794–798.CrossRefGoogle Scholar
  20. 20.
    Fardis, M.N., Cornell, C.A.: Containment linear seismic reliability under statistical uncertainty. Nucl.Engng and Design 49 (1978) 279–294.CrossRefGoogle Scholar
  21. 21.
    Engesvik, K.N., Moan, T.: Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints. Engng Fracture Mech. 18 (1983) 743–762.CrossRefGoogle Scholar
  22. 22.
    Schaller, G.L.: Impact of probability risk assessement of containment. Nucl. Engng and Design 69 (1983) 399–402.Google Scholar
  23. 23.
    Wirsching, P.H.: Fatigue reliability in welded joints of offshore structures. In: Proc. of 11-th Offshore Technology Conference, Houston 1979, 197–204.Google Scholar
  24. 24.
    Ditlevsen, O.: Reliability against defect generated fracture. Journal of Structural Mechanics 9 (1981) 115–137.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • V. V. Bolotin
    • 1
  1. 1.Institute of Mechanical EngineeringUSSR Academy of SciencesMoscowRussia

Personalised recommendations