Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 55))

  • 653 Accesses

Abstract

In this prototype theory of ferromagnetism—and of many other physical phenomena as well—a spin Si =±1 is assigned to each of N sites on a fixed lattice. The spins, which live on the vertices of the lattice, interact with one another by means of bonds (the links of the lattice). These have strengths Jij in energy units. In addition, the spins can interact with external fields Bi of arbitrary strengths. The total energy is then given by:

$$H = - \sum {{J_{ij}}} {S_i}{S_j} - \sum {{B_i}} {S_i}$$

and can be directly evaluated in any of the 2N spin configurations. In the most familiar version of the Ising model, the interactions are limited to nearest-neighbors on the lattice and the magnetic field is homogeneous, Bi =constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.G. Brush: The history of the Lenz-Ising 883 (1967)

    Google Scholar 

  2. W. Lenz: Phys. Z. 21, 613 (1920)

    Google Scholar 

  3. E. Ising: Z. Physik 31, 253 (1925)

    Article  ADS  Google Scholar 

  4. H. Bethe: Proc. Roy. Soc. (London) 9, 244 (1938). Also: F. Cernuschi

    Google Scholar 

  5. R. Fowler, E. Guggenheim: Statistical Thermodynamics (Cambridge Univ. Press, Cambridge 1939) Chap.13

    Google Scholar 

  6. C.N. Yang, T.D. Lee: Phys. Rev. 87, 404 (1952)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. T.D. Lee, C.N. Yang: Phys. Rev. 87, 410 (1952) Recent work on the complex zeros includes:E. Marinari: Nucl. Phys. B235 (FS11), 123 (1984), 3D Ising model

    Google Scholar 

  8. K. De’Bell, M.L. Glasser: Phys. Lett. 104A, 255 (1984), Cayley tree W. Saarloos, D. Kurtze: J. Phys. A17, 1301 (1984), Ising model

    Google Scholar 

  9. A. Caliri, D. Mattis: Phys. Lett. 106A, 74 (1984), long-range model of (2.7.2) with J0

    Google Scholar 

  10. R. Peierls: Proc. Camb. Phil. Soc. 32, 477 (1936)

    MATH  Google Scholar 

  11. R. Griffiths: Phys. Rev. 136, A437 (1964). The reader will find it in- structive to determine where this proof fails for the XY model! See further corrections and extension in

    Google Scholar 

  12. C.-Y. Weng, R. Griffiths, M. Fisher: Phys. Rev. 162, 475 (1967)

    Article  ADS  Google Scholar 

  13. L. Onsager: Phys. Rev. 65, 117 (1944), algebraic formulation

    Google Scholar 

  14. B. Kaufman: Phys. Rev. 76, 1232 (1949), spinor reformulation

    Google Scholar 

  15. L. Onsager: Nuovo Cimento (Suppl.) 6, 261 (1949), spontaneous magnetization;

    Google Scholar 

  16. C.N. Yang: Phys. Rev. 85, 809 (1952), first derivation of Onsager’s formula for magnetization in the literature

    Google Scholar 

  17. H. Kramers, G. Wannier: Phys. Rev. 60, 252, 263 (1941)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. D.C. Mattis: The Theory of MagnetismI, Springer Ser. Solid-State Sci., Vol. 17 ( Springer, Berlin Heidelberg 1981 )

    Google Scholar 

  19. C. Domb: On the Theory of Cooperative Phenomena in Crystals, Adv. Phys. 9, 149–361 (1960). The fit of Tc(d) on hypercubic lattices to 2 straight lines was performed by G. Cocho, G. Martinez-Mekler, R. Martinez-Enriquez: Phys. Rev. B26, 2666 (1982)

    Google Scholar 

  20. M.E. Fisher: Phys. Rev. 162, 480 (1967)

    Article  ADS  Google Scholar 

  21. H.R. Ott et al.: Phys. Rev. B25, 477 (1982);

    Google Scholar 

  22. Z. Chen, M. Kardar: Phys. Rev. B30, 4113 (1984)

    ADS  Google Scholar 

  23. M.E. Lines: Phys. Rpts. 55, 133(1979)

    Google Scholar 

  24. E. Jahnke, F. Emde: Tables of Functions( Dover, New York 1945 )

    MATH  Google Scholar 

  25. T.A. Tjon: Phys. Rev. B2, 2411 (1970)

    ADS  Google Scholar 

  26. B. McCoy, J. Perk, R. Schrock: Nucl. Phys. B220, 35, 269 (1983) and references therein

    Google Scholar 

  27. E. Lieb, T. Schultz, D. Mattis: Ann. Phys. (NY) 16, 407 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. P. Pfeuty: Phys. Lett. 72A, 245 (1979)

    ADS  MathSciNet  Google Scholar 

  29. T. Schultz, D. Mattis, E. Lieb: Rev. Mod. Phys. 36. 856 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  30. A review of Toeplitz matrices, and various improvements and applications thereof to statistical mechanics has been published by M. Fisher, R. Hartwig: Adv. Chem. Phys. 15, 333–354 (1968). The original application to the Ising model in the familiar literature seems to be E. Mon-troll, R. Potts, J. Ward: J. Math. Phys. 4, 308 (1963) in the Onsager anniversary issue of that Journal. But Montroll et al. disclaim first use, and credit Onsager #x00FD;ü this is one of the methods used by Onsager himself. Mark Kac alerted the authors to a limit formula for the calculation of large Toeplitz determinants which appear naturally in the theory of spin corre- lations in a two-dimensional Ising lattice. This formula was first“ discussed by Szeg? [Comm. Säminaire Math. Univ. Lund, tome suppl. (1952) déödie M. Riesz, p. 228]. Perusal of the Szeg? paper shows that the problem was proposed to Szeg? by the Yale mathematician S. Kakutani, who apparently heard it from Onsager…

    Google Scholar 

  31. T. Oguchi: J. Phys. Soc. Jpn. 6, 31 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.F. Sykes: J. Math. Phys. 2, 52 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  33. G.A. Baker, Jr.: Phys. Rev. 124, 768 (1961)

    Article  ADS  Google Scholar 

  34. E. Barouch, B. McCoy, T.T. Wu: Phys. Rev. Lett. 31, 1409 (1973)

    Article  ADS  Google Scholar 

  35. M. Plischke, D. Mattis: Phys. Rev. B2, 2660 (1970)

    ADS  Google Scholar 

  36. E. Barouch: Physica 1D, 333 (1980) Generalizations of the Lee-Yang methods [3.6] to other models have recently appeared, notably: M. Bander, C. Itzykson: Phys, Rev. B30 6485 (1984) for 0(N) spin models D. Kurtze, M. Fisher: J. Stat. Phys. 19 205 (1978) for spherical models

    Google Scholar 

  37. R. Baxter, I. Enting: J. Phys. All, 2463 (1978)

    Google Scholar 

  38. G. Wannier: Phys. Rev. 79, 357 (1950)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. T. Utiyama: Progr. Theor. Phys. 6, 907 (1951)

    Article  MATH  ADS  Google Scholar 

  40. M. Sykes, M. Fisher: Physica 28, 919, 939 (1962)

    ADS  Google Scholar 

  41. E. Lieb, D. Ruelle: J. Math. Phys. 13, 781 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  42. E. Müller-Hartmann, J. Zittartz: Z. Physik B27, 261 (1977)

    ADS  Google Scholar 

  43. J. Zittartz: Z. Physik B40, 233 (1980)

    ADS  MathSciNet  Google Scholar 

  44. K.Y. Lin, F.Y. Wu: Z. Physik B33, 181 (1979)

    ADS  Google Scholar 

  45. A. Bienenstock: J. Appl. Phys. 37, 1459 (1966)

    Article  ADS  Google Scholar 

  46. M. Plischke, D.C. Mattis: Phys. Rev. A3, 2092 (1971)

    ADS  Google Scholar 

  47. H. Blöte, W. Huiskamp: Phys. Lett. A29, 304 (1969)

    ADS  Google Scholar 

  48. L. de Jongh, A. Miedema: Experiments on Simple Magnetic Model Systems, Adv. Phys. 23, 1–260 (1974)

    Google Scholar 

  49. M..Sykes, J. Essam, D. Gaunt: J. Math. Phys. 6, 283 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Sykes, D. Gaunt, J. Essam, D. Hunter: J. Math. Phys. 14. 1060 (1973)

    Article  ADS  Google Scholar 

  51. M. Sykes, D. Gaunt, S. Mattingly, J. Essam, C. Elliott: J. Math. Phys. 14, 1066 (1973)

    Article  ADS  Google Scholar 

  52. M. Sykes, D. Gaunt, J. Martin, S. Mattingly, J. Essam: J. Math. Phys. 14, 1071 (1973)

    Article  ADS  Google Scholar 

  53. M. Sykes, D. Gaunt, J. Essam, B. Heap, C. Elliott, S. Mattingly: J. Phys. A6, 1498 (1973)

    ADS  Google Scholar 

  54. M. Sykes, D. Gaunt, J. Essam, C. Elliott: J. Phys. A6, 1506 (1973)

    ADS  Google Scholar 

  55. D. Gaunt, M. Sykes: J. Phys. A6, 1517 (1973)

    ADS  Google Scholar 

  56. M. Sykes, D. Gaunt, P. Roberts, J. Wyles: J. Phys. A5, 624, 640 (1972)

    ADS  Google Scholar 

  57. M. Sykes, D. Hunter, D. McKenzie, B. Heap: J. Phys. A5, 667 (1972)

    ADS  Google Scholar 

  58. D. Gaunt, J. Guttmann: Asymptotic Analysis of Coefficients, in Phase Transitions and Critical Phenomena, Vol.3, ed. by C. Domb and M. Green (Academic, New York 1974 )

    Google Scholar 

  59. C. Domb, M. Green (eds.): Phase Transitions and Critical Phenomena, Vol. 3 ( Academic, New York 1974 )

    Google Scholar 

  60. M. Sykes et al.: J. Phys. A5, 640 (1972) Appendix 3.45 See the recent analysis and references in S. Jensen, 0. Mouritsen: J. Phys. A15 2631 (1982) or [3.43]

    Google Scholar 

  61. D. Gaunt, J. Guttmann: Asymptotic Analysis of Coefficients, in Phase Transitions and Critical Phenomena, Vol.3, ed. by C. Domb and M. Green (Academic, New York 1974 )

    Google Scholar 

  62. R.B. Griffiths: J. Math. Phys. 10, 1559 (1969)

    Article  ADS  Google Scholar 

  63. R.B. Griffiths: J. Math. Phys. 8, 478, 484 (1967)

    Article  ADS  Google Scholar 

  64. M. Blume: Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  65. H.W. Capel: Physica 37 423(1967) and references therein (Blume-Capel model)

    Google Scholar 

  66. H. Chen, P.M. Levy: Phys. Rev. B7, 4267 (1973)

    ADS  Google Scholar 

  67. D. Furman, S. Dattagupta, R.B. Griffiths: Phys. Rev. B15, 441 (1977)

    ADS  Google Scholar 

  68. E.K. Riedel, F.J. Wegner: Phys. Rev. B9, 294 (1974)

    ADS  Google Scholar 

  69. G.B. Taggart: Phys. Rev. B20, 3886 (1979)

    ADS  Google Scholar 

  70. When Pythagoras established the theorem of the square upon the hypothenuse he sacrificed 1000 oxen to Apollo. Since then, whenever anyone has had a new idea, oxen everywhere have trembled

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mattis, D.C. (1985). The Ising Model. In: The Theory of Magnetism II. Springer Series in Solid-State Sciences, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82405-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82405-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82407-4

  • Online ISBN: 978-3-642-82405-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics