Laser Vaporization of Clean and CO-Covered Polycrystalline Copper Surfaces

  • R. Viswanathan
  • Ingo Hussla
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 39)


Data and results of experiments on the ablation of clean and CO-covered polycrystalline copper surfaces by 248 nm KrF excimer laser pulses of moderate peak power densities (300 MW/cm2 − 1 GW/cm2) are presented. Temperatures of the vaporized copper species were determined from velocity distributions obtained by real time resolved quadrupole mass spectrometry. It was found that the temperatures of neutral copper species (22000 K – 27000 K) in the vapor were significantly higher than the boiling point of copper (2855 K), even near the vaporization threshold for clean polycrystalline copper (300 MW/cm2). Submonolayer coverages of CO on the copper surfaces caused a significant increase in the vaporization threshold absorbed laser power density (> 400 MW/cm2).


Copper Surface Laser Vaporization Laser Power Density Copper Species Polycrystalline Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Burgess, Jr., R. Viswanathan, I. Hussla, P. C. Stair, and E. Weitz, J. Chem. Phys. 79, 5200 (1983).CrossRefGoogle Scholar
  2. 2.
    G. Wedler and H. Ruhmann, Surf. Sci. 121, 464 (1982).CrossRefGoogle Scholar
  3. 3.
    G. Ertl and M. Neumann, Z. Naturforsch. 279, 1607 (1972).Google Scholar
  4. 4.
    J. F. Ready, Effects of High Power Laser Radiation, Academic Press, New York (1971).Google Scholar
  5. 5.
    T. J. Chuang, Surf Sci. Reports 3, 1 (1983); T. J. Chuang, J. Vac. Sci. Technol. 21, 798 (1982).Google Scholar
  6. 6.
    N. Bloembergen in “Symposium Laser-Solid Interaction and Laser Processing — 1978,” p. 1, S. D. Ferris, H. J. Leamy, and J. M. Poate, American Institute of Physics Conference Proceedings No. 50, New York (1979).Google Scholar
  7. 7.
    A. K. Jain, V. N. Kulkarni, and D. K. Sood, Appl. Phys. 25, 127 (1981).CrossRefGoogle Scholar
  8. 8.
    S. I. Anisimov, Zh. Tekh. Fiz. 36, 1273 (1966); English Transl.: Sov. Phys.-Tech. Phys. 11, 965 (1967).Google Scholar
  9. 9.
    I. Hussla, R. Viswanathan, D. R. Burgess, Jr., P. C. Stair, and E. Weitz, Rev. Sci. Instrum., submitted for publication (April 1984).Google Scholar
  10. 10.
    D. R. Burgess, Jr., unpublished work.Google Scholar
  11. 11.
    L. P. Levine, J. F. Ready, and E. Bernal, IEEE J. Quantum Electron. QE-4, 18 (1968).CrossRefGoogle Scholar
  12. 12.
    See Ref. 4., Chapter 3.Google Scholar
  13. 13.
    E. Bernal, J. F. Ready, and L. P. Levine, IEEE J. Quantum Electron. QE-2, 480 (1966).CrossRefGoogle Scholar
  14. 14.
    S. E. Egorov, V. S. Letokhov, and A. N. Shibanov, in “Surface Studies with Lasers,” Springer Series in Chemical Physics 33, F. R. Aussenegg, A. Leitner, and M. E. Lippitsch, eds., Springer-Verlag, New York (1983), p. 156.Google Scholar
  15. 15.
    See, e.g., H. Seki, J. Chem. Phys. 76, 4412 (1982). J. F. Evans, M. Grant, A. Albrecht, D. M. Ullevic, and R. M. Hexter, J. Electroanal. Chem. 106, 209 (1980). P. F. Liao, J. G. Bergmann, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, Chem. Phys. Rev. 82, 355 (1981).Google Scholar
  16. 16.
    H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).CrossRefGoogle Scholar
  17. 17.
    I. Hussla and R. Viswanathan, Surf. Sci., 144(1984), in press.Google Scholar
  18. 18.
    National Bureau of Standards, Spectral Tables in Monograph 53, 1963.Google Scholar
  19. 19.
    T. J. Chuang, I. Hussla, and W. Sesselmann, these proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. Viswanathan
    • 1
  • Ingo Hussla
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations