Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 7))

  • 139 Accesses

Abstract

A biharmonic boundary integral equation (BBIE) method is used to solve a two dimensional contained viscous flow problem. In order to achieve a greater accuracy than is usually possible in this type of method analytic expressions are used for the piecewise integration of all the kernel functions rather than the more time-consuming method of Gaussian quadrature.

Because the boundary conditions for the problem under consideration — commonly referred to as the ‘stick-slip’ problem — give rise to a singularity in the solution domain for the biharmonic stream function, we find that the rate of convergence of the solution is poor in the neighbourhood of the singularity. Hence a modified BBIE (MBBIE) method is presented which takes into account the analytic nature of the aforementioned singularity. This modification is seen to produce rapid convergence of the results throughout the solution domain.

The BBIE and MBBIE also provide information concerning the pressure and velocity fields of the flow and these properties are seen to be in excellent agreement with the analytical results of Watson.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.K.LASKER, Ph.D. thesis, University College London, 1971.

    Google Scholar 

  2. M.A.JASWON and G.T.SYMM, Integral Equation Methods in Potential Theory and Elastostatics, Acadedmic Press, London, 1977.

    MATH  Google Scholar 

  3. C.A.BREBBIA (Editor), Recent Advances in Boundary Element Methods, Pentech Press, London 1978.

    MATH  Google Scholar 

  4. C.A.BREBBIA, J.C.F.TELLES and L.C.WROBEL, Boundary Element Techniques: Theory and aApplications in Engineering, Springer Verlag, Berlin and New York, 1984.

    Google Scholar 

  5. C.W.MILLER, Ph.D. thesis, University of Iowa, USA, 1979.

    Google Scholar 

  6. G.K.YOUNGREN and A.ACRIVOS, J. Fluid Mech., Vol.69(2), (1975), 377.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.K.YOUNGREN and A.ACRIVOS, J. Fluid Mech., Vol.76(3), (1976), 433.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.M.RALLISON and A.ACRIVOS, J. Fluid Mech., Vol.89(1), (1978), 191.

    Article  MATH  Google Scholar 

  9. J.M.RALLISON, J. Fluid Mech., Vol.109, (1981), 465.

    Article  MATH  Google Scholar 

  10. A.MIR-MOHAMED-SADEGH and K.R.RAJAGOPAL, Trans. ASME J. Appl. Mech., Vol.47(3), (1980), 485.

    Article  Google Scholar 

  11. J.R.BLACK, M.M.DENN and G.C.HSIAO, Theoretical Rheology, (J.F.Hutton, J.R.A.Pearson and K.Walters eds.), pp.3–30, Halsted, New York, 1975.

    Google Scholar 

  12. C.J.COLEMAN, Q. Jl. Mech. Appl. Math., Vol.34(4), (1981), 453.

    Article  MATH  Google Scholar 

  13. E.J.WATSON, Private communication, 1981.

    Google Scholar 

  14. S.RICHARDSON, Proc. Camb. Phil. Soc, Vol.67, (1970), 477.

    Article  MATH  Google Scholar 

  15. H.MOTZ, Q. Appl. Math., Vol.4(4), (1946), 371.

    MathSciNet  Google Scholar 

  16. G.T.SYMM, National Physics Laboratory Report No. NAC31, (1973).

    Google Scholar 

  17. D.B.INGHAM, P.J.HEGGS and M.MANZOOR, IEEE Trans. Microwave Theory and Tech., Vo.MTT-29, (1981), 1240.

    Article  Google Scholar 

  18. D.B.INGHAM, P.J.HEGGS and M.MANZOOR, J. Comput.Phys., Vol.42(1), (1981), 77.

    Article  MATH  Google Scholar 

  19. L.S.XANTHIS, M.J.M.BERNAL and C.ATKINSON, Comp. Meth. Appl. Mech. Engrg., Vol.26(3), (1981), 285.

    Article  MATH  MathSciNet  Google Scholar 

  20. O.R.BURGGRAF, J. Fluid Mech., Vol.24(1), (1966), 113.

    Article  Google Scholar 

  21. F.PAN and A.ACRIVOS, ibid., Vol.28(4), (1967), 643.

    Article  Google Scholar 

  22. D.H.MICHAEL, Mathematika, Vol.5, (1958), 82.

    Article  MATH  MathSciNet  Google Scholar 

  23. G.FAIRWEATHER, F.J.RIZZO, D.J.SHIPPY and Y.S.WU, J. Comput. Phys., Vol.31(1), (1979), 96.

    Article  MATH  MathSciNet  Google Scholar 

  24. M.MAITI and S.K.CHAKRABARTY, Int. J. Engng. Sci., Vol.12, (1974), 793.

    Article  MATH  Google Scholar 

  25. Y.S.WU, F.J.RIZZO, D.J.SHIPPY and J.A.WAGNER, Q. Elec. Machines and Electromech., Vol.1, (1977), 301.

    Google Scholar 

  26. H.K.MOFFATT, J. Fluid Mech., Vol. 18(1), 1964, 1.

    Article  MATH  Google Scholar 

  27. W.R.DEAN and P.E.MONTAGNON, Proc. Camb. Phil. Soc, Vol.45, (1949), 389.

    Article  MATH  MathSciNet  Google Scholar 

  28. G.D.SMITH, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press, Oxford, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Ingham, D.B., Kelmanson, M.A. (1984). An Integral Equation Method for the Solution of Singular Slow Flow Problems. In: Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems. Lecture Notes in Engineering, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82330-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82330-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13646-0

  • Online ISBN: 978-3-642-82330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics