Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 7))

  • 131 Accesses

Abstract

The mathematical formulation of many problems in physics and engineering involving rates of change with respect to two or more independent variables, leads either to a partial differential equation or to a set of such equations. These equations are supplemented by a set of prescribed boundary conditions to constitute a boundary value problem (BVP), the solution of which, in general, lies beyond the reach of analytical approaches. Consequently a variety of numerical schemes have been developed in order to provide approximate solutions to such BVP’s. Certainly the most widely used are the finite difference (FD) and finite element (FE) “space discretisation” techniques in which the governing partial differential equations are approximated by a set of discretised equations whose solution is subsequently obtained numerically at a finite number of prespecified points in the solution domain. An alternative approach, upon which the present work is based, has been to employ integral equation techniques, which are formulated so that the governing equations are solved only on the boundary of the required solution domain. Various such techniques were originally suggested in the latter half of the last century by Helmholtz [1], Kelvin [2] and Kirchoff [3], primarily for the study of wave propagation in unbounded media. In 1903, Fredholm [4] presented the first rigorous investigation of the existence and uniqueness of solutions to integral equations, although neither he nor his immediate successors envisaged the range of problems to which his formulations could be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HELMHOLTZ, H., Theorie der Luftschwingungen in Rohren mit offenen Enden, Crelle’s J., Vol.57, pp.1–72, 1860.

    Article  MATH  Google Scholar 

  2. RAYLEIGH, Lord, Theory of Sound, Dover, NYC, New York (Reprint), 1887.

    Google Scholar 

  3. KIRCHOFF, G., Zur Theorie der Lichstrahlen, Berl.Ber., pp.641, 1882.

    Google Scholar 

  4. FREDHOLM, I., Sur une classe d’equations fonctionelles, Acta. Math., Vol. 27, pp.365–390, 1903.

    Article  MATH  MathSciNet  Google Scholar 

  5. PROUDMAN, J., A theorem in tidal dynamics, Phil. Mag., Vol. 49, pp.570–573, 1925.

    Google Scholar 

  6. JASWON, M.A. and PONTER, A.R.S., An integral equation solution of the torsion problem, Proc. R. Soc. Lond., Vol. A273, pp.237–246, 1963.

    MathSciNet  Google Scholar 

  7. JASWON, M.A., Integral equation methods in potential theory, I, Proc. R. Soc. Lond., Vol. A275, pp.23.–32, 1963.

    MathSciNet  Google Scholar 

  8. SYMM, G.T., Integral equation methods in potential theory, II, Proc. R. Soc. Lond., Vol. A275, pp.33.–46, 1963.

    MathSciNet  Google Scholar 

  9. JASWON, M.A. and SYMM, G.T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977.

    MATH  Google Scholar 

  10. SYMM, G.T., Treatment of singularities in the solution of Laplace’s equation by an integral equation method, National Physics Laboratory Report No. NAC31, 1973.

    Google Scholar 

  11. INGHAM, D.B., HEGGS, P.J. and MANZOOR, M., The numerical solution of plane potential problems by improved boundary integral equation methods, J. Comput. Phys., Vol.42(1), pp.77–98, 1981.

    Article  MATH  Google Scholar 

  12. INGHAM, D.B., HEGGS, P.J. and MANZOOR, M., boundary integral equation analysis of transmission line singularities, IEEE Trans. Microwave Theory and Tech., Vol.MTT-29, pp.1240–1243, 1981.

    Article  Google Scholar 

  13. LANGLOIS, W.E., Slow Viscous Flow, MacMillan, New York, 1964.

    Google Scholar 

  14. RICHARDSON, S., A ‘stick — slip’ problem related to the motion of a free jet at low Reynolds numbers, Proc. Camb. Phil. Soc, Vol.67, pp.477–489, 1970.

    Article  MATH  Google Scholar 

  15. KELMANSON, M.A., An integral equation method for the solution of singular slow flow problems, J. Comput. Phys., Vol.51(1), pp.139–158, 1983.

    Article  MATH  Google Scholar 

  16. MIR-MOHAMAD-SADEGH, A. and RAJAGOPAL, K.R., The flow of a non-newtonian fluid past projections and depressions, Trans. ASME J. Appl. Mech., Vo.47(3), pp.485–488, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  17. MICHAEL, D.H., The separation of viscous liquid at a straight edge, Mathematika, Vol.5, pp.82–84, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  18. MOFFATT, H.K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., Vol.18(1), pp.1–18, 1964.

    Article  MATH  Google Scholar 

  19. WATSON, E., Private communication, 1981.

    Google Scholar 

  20. DEAN, W.R. and MONTAGNON, P.E., On the steady motion of viscous liquid in a corner, Proc. Camb. Phil. Soc, Vol.45, pp.389–394, 1949.

    Article  MATH  MathSciNet  Google Scholar 

  21. KELMANSON, M.A., Modified integral equation solution of viscous flows near sharp corners, Computers and Fluids, Vol.11(4), pp.307–324, 1983.

    Article  MATH  Google Scholar 

  22. PAN, F. and ACRIVOS, A., Steady flows in rectangular cavities, J. Fluid Mech., Vol.28(4), pp.643–655, 1967.

    Article  Google Scholar 

  23. BURGGRAF, O., Analytical and numerical studies on the structure of steady separated flows, J. Fluid Mech., Vol.24(1), pp.113–151, 1966.

    Article  Google Scholar 

  24. GUPTA, R.P., MANOHAR, M.M. and NOBLE, B., Nature of viscous flows near sharp corners, Computers and Fluids, Vol.9(4), pp.379–388, 1981.

    Article  MATH  Google Scholar 

  25. DENNIS, S.C.R. and SMITH, F.T., Steady flow through a channel with a symmetrical constriction in the form of a step, Proc. R. Soc. Lond., Vol.A372, pp.393–414, 1980.

    MathSciNet  Google Scholar 

  26. HOLSTEIN Jr., H. and PADDON, D.J., A singular finite difference treatment of re-entrant corner flows. Part 1: newtonian fluids, J. Non-newtonian Fluid Mech., Vol.8, pp.81–93, 1981.

    Article  MATH  Google Scholar 

  27. BRAMLEY, J.S. and DENNIS, S.C.R., The calculation of eigenvalues for the stationary perturbation of Poiseuille flow, J. Comput. Phys., Vol.47(2), pp.179–198, 1982.

    Article  MATH  Google Scholar 

  28. MANZOOR, M., Heat flow through extended surface heat exchangers, Ph.D. thesis, University of Leeds, 1982.

    Google Scholar 

  29. XANTHIS, L.S., BERNAL, M.J.M. and ATKINSON, C., The treatment of singularities in the calculation of stress intensity factors using the boundary integral equation method, Comput. Meth. Appl. Mech. Engrg., Vol.26(3), pp.285–304, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  30. KELMANSON, M.A., Solution of nonlinear elliptic equations with boundary singularities by an integral equation method, to appear in J. Comput. Phys., 1984.

    Google Scholar 

  31. INGHAM, D.B., HEGGS, P.J. and MANZOOR, M., Boundary integral equation solution of nonlinear plane potential problems, IMA J. Num. Anal., Vol.1, pp.416–426, 1981.

    Article  MathSciNet  Google Scholar 

  32. KHADER, M.S. and HANNA, M.C, An iterative boundary numerical solution for general steady heat conduction problems, Trans. ASME J. Heat. Transfer, Vol.103, pp.26–31, 1981.

    Article  Google Scholar 

  33. COULSON, C.A. and BOYD.T.J.M., Electricity, 2nd Edn, Longman, London, 1979.

    Google Scholar 

  34. JOHNSON, L.W. and REISS, R.D., Numerical Analysis, Addison-Wesley, Reading, Mass., USA, 1982.

    MATH  Google Scholar 

  35. BKEBBIA, C.A. and WALKER, S., Boundary Element Techniques in Engineering, Butterworth, London, 1980.

    Google Scholar 

  36. BREBBIA, C.A., TELLES, J.C.P. and WROBEL, L.C., Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag, Berlin and New York, 1984.

    MATH  Google Scholar 

  37. LONGUET-HIGGINS, M.S. and COKELET, E.D., The deformation of steep surface waves on water. Part 1: a numerical method of computation, Proc. R. SOC Lond., Vol.A350, pp.1–26, 1976.

    MathSciNet  Google Scholar 

  38. KELMANSON, M.A., Boundary integral equation solution of viscous flows with free surfaces, J. Eng. Math., Vol.17(4), pp.329–343, 1983.

    Article  MATH  Google Scholar 

  39. RUSCHAK, K.J., A method for incorporating free boundaries with surface tension in finite element fluid flow simulators, Int. J. Num. Meth. in Engng., Vol.15, pp.639–648, 1980.

    Article  MATH  Google Scholar 

  40. PINKUS, O. and STERNLICHT, B., Theory of Hydrodynamic Lubrication, McGraw-Hill, New York, 1961.

    MATH  Google Scholar 

  41. ALLAIRE, P.E., Design of journal bearings for high speed rotating machinery, Proc. Design Engrg. Conf., pp.45–84, Chicago, Illinois, (S.M.Rohde, C.J.Maday and P.E.Allaire, Eds.), ASME, 1979.

    Google Scholar 

  42. KELMANSON, M.A., A boundary integral equation method for the study of slow flow in bearings with arbitrary geometries, to appear in Trans. ASME J. Tribology, 1984.

    Google Scholar 

  43. CASTELLI,I.V. and SHAPIRO,W., Improved methods for numerical solutions of the general incompressible fluid film lubrication problem, Trans. ASME J. Lub. Tech., Vol.89, pp.211–218, 1967.

    Article  Google Scholar 

  44. BREWE, D.E., HAMROCK, B.J. and TAYLOR, C.M., Effect of geometry on hydrodynamic film thickness, Trans. ASME J. Lub. Tech., Vol.101, pp.231–239, 1979.

    Article  Google Scholar 

  45. HARGREAVES, D.J. and TAYLOR, C.M., The determination of lubricant flowrate from a static grooved rectangular thrust bearing using a stream function formulation, J. Mech. Eng. Sci., Vol.24(l), pp.51–53, 1982.

    Article  Google Scholar 

  46. WADA, S., HAYASHI, H. and MIGITA, M., Application of the finite element method to hydrodynamic lubrication problems. Part 1: infinite width bearings, Bull. JSME, Vol.14(77), pp.1222–1233, 1971.

    Article  Google Scholar 

  47. BOOKER, J.F. and HUEBNER, K.H., Application of finite element methods to lubrication: an engineering approach, Trans. ASME J. Lub. Tech., Vol.94, pp.313–323, 1972.

    Article  Google Scholar 

  48. HAYASHI, H. and TAYLOR, C.M., A determination of cavitation interfaces in fluid film bearings using finite elements analysis, J. Mech. Eng. Sci., Vol.22(6), pp.277–285, 1980.

    Article  Google Scholar 

  49. KAMAL, M.M., Separation in the flow between eccentric rotating cylinders, Trans. ASME J. Basic Engrg., Vol.D88, pp.717–724, 1966.

    Article  Google Scholar 

  50. DiPRIMA, R.C. and STUART, J.T., Flow between eccentric rotating cylinders, Trans. ASME J. Lub. Tech., Vol.94, pp.266–274, 1972.

    Article  Google Scholar 

  51. WENDLAND, W.L., Boundary element methods and their asymptotic convergence, Preprint no.690, Technische Hochschule Darmstadt, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Ingham, D.B., Kelmanson, M.A. (1984). General Introduction. In: Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems. Lecture Notes in Engineering, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82330-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82330-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13646-0

  • Online ISBN: 978-3-642-82330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics