Skip to main content

State and Parameter Estimation

  • Chapter
Book cover Discrete Systems

Part of the book series: Communications and Control Engineering Series ((CCE))

  • 166 Accesses

Abstract

The purpose of this chapter is to study the behaviour of discrete-time dynamical systems under the influence of external effects which can be described in a statistical way. It can be argued that all real systems operate in a stochastic environment where they are subject to noise (unknown disturbances) and, in addition, the controller has to rely, in practice, on imperfect measurements. The noise may arise due to unpredictable changes at the input end of the system, and/or due to inaccurate measurements at the output end. In either case, exact information about the state of the system is not available, and we should therefore seek methods to estimate the state of the system on the basis of statistically related data. This leads to the state estimation problem. In other applications, the coefficients of the models need to be determined on the basis of the input and output records which are corrupted by noise components. This defines the parameter estimation problem. Both these problems are examined in this chapter and techniques for their solutions are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sage, A.P. and J.L. Melsa, “Estimation Theory with Applications to Communications and Control”, McGraw-Hill, N.Y., 1971.

    MATH  Google Scholar 

  2. Astrom, K.J., “Introduction to Stochastic Control Theory”, Academic Press, N.Y., 1970.

    Google Scholar 

  3. Anderson, B.D.O. and J.B. Moore, “Optimal Filtering”, Prentice Hall, N.J., 1979.

    MATH  Google Scholar 

  4. Meditch, J.S., “Stochastic Optimal Linear Estimation and Control”, McGraw-Hill, N.Y., 1969.

    MATH  Google Scholar 

  5. Jazwinski, A.H., “Stochastic Processes and Filtering Theory”, Academic Press, N.Y., 1970.

    MATH  Google Scholar 

  6. Brogan, W.L., “Modern Control Theory”, Quantum Publishing Inc., N.Y., 1974.

    Google Scholar 

  7. Cox, H., “On the Estimation of State Variables and Parameters for Noisy Dynamic Systems”, IEEE Trans. Autom. Contr., vol. AC-9, pp. 5–12, 1964.

    Google Scholar 

  8. Kalman, R.E., “A New Approach to Linear Filtering and Prediction Problems”, Trans. ASME, Ser. D: J. Basic Engineering, vol. 82, pp. 35–45, 1960.

    Article  Google Scholar 

  9. Kalman, R.E. and R.S. Bucy, “New Results in Linear Filtering and Prediction Theory”, Trans. ASME, Ser. D: J. Basic Engineering, vol. 83, pp. 95–108, 1961.

    Article  MathSciNet  Google Scholar 

  10. Singh, M.G. and A. Titli, “Systems: Decomposition, Control and Optimization”, Pergamon Press, Oxford, 1978.

    Google Scholar 

  11. Bryson, A.E. and Y.C. Ho, “Applied Optimal Control”, Ginn and Co., Massachusetts, 1969.

    Google Scholar 

  12. Athans, M. and E. Tse, “A Direct Derivation of the Optimal Linear Filter Using the Maximum Principle”, IEEE Trans. Autom. Contr., vol. AC-12, pp. 690–698, 1967.

    Google Scholar 

  13. Sorenson, H.W., “Least-Squares Estimation: from Gauss to Kalman”, IEEE Spectrum, vol. 7, pp. 63–68, 1970.

    Article  Google Scholar 

  14. Balakrishnan, A.V., “A Martingale Approach to Linear Recursive State Estimation”, SIAM J. Control, vol. 10, pp. 754–766, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bierman, G.J., “A Comparison of Discrete Linear Filtering Algorithms” IEEE Trans. Aerospace and Electronic Systems, vol. AES-9, pp. 28–37, 1973.

    Google Scholar 

  16. Pearson, J.D., “Dynamic Optimization Techniques”, in Optimization Methods for Large Scale Systems, edited by D.A. Wismer, McGraw-Hill, N.Y., 1971.

    Google Scholar 

  17. Singh, M.G., “Multi-level State Estimation”, Int. J. Systems Sciences, vol. 6, pp. 535–555, 1975.

    Google Scholar 

  18. Hassan, M.F., “Optimal Kalman Filter for Large Scale Systems Using the Prediction Approach”, IEEE Trans. Systems, Man and Cybern., vol. SMC-6, pp., 1976.

    Google Scholar 

  19. Shah, M., “Suboptimal Filtering Theory for Interacting Control Systems”, Ph.D. Thesis, Cambridge University, 1971.

    Google Scholar 

  20. Hassan, M.F., G. Salut, M.G. Singh and A. Titli, “A Decentralized Computational Algorithm for the Global Kalman Filter”, IEEE Trans. Autom. Contr., vol. AC-23, pp. 262–267, 1978.

    Google Scholar 

  21. Luenberger, D.G., “Optimization by Vector Space Methods”, J. Wiley, N.Y., 1969.

    MATH  Google Scholar 

  22. Darwish, M.G. and J. Fantin, “An Approach for Decomposition and Reduction of Dynamical Models for Large Scale Power Systems”, Int. J. Systems Science, vol. 7, pp. 1101–1112, 1976.

    Article  Google Scholar 

  23. Eykoff, P., “System Identification”, J. Wiley and Sons, N.Y., 1974.

    Google Scholar 

  24. Hassan, M.F., M.S. Mahmoud, M.G. Singh and M.P. Spathopolous, “A Two-Level Parameter Estimation Algorithm Using the Multiple Projection Approach”, CSC Report No.518, UMIST, Manchester, UK, and also Automatica, vol. 18, pp. 621–630, 1982.

    MATH  Google Scholar 

  25. Clarke, D.W., “Generalized Least-Squares Estimation of the Parameters of a Dynamic Model”, IFAC Symposium - Identification in Automatic Control Systems, Prague Paper # 3. 17, 1967.

    Google Scholar 

  26. Hasting-James, R. and M.W. Sage, “Recursive Generalized Least-Squares Procedure for On-Line Identification of Process Parameters”, Proc. IEE, vol. 116, pp. 2057–2062, 1969.

    Article  Google Scholar 

  27. Arafeh, S. and A.P. Sage, “Multilevel Discrete-Time System Identification in Large Scale Systems”, Int. J. Systems Science, vol. 8, pp. 753–791, 1974.

    Article  MathSciNet  Google Scholar 

  28. Arafeh, S. and A.P. Sage, “Hierarchical System Identification of States and Parameters in Interconnected Power Systems”, Int. J. Systems Science, vol. 9, pp. 817–846, 1975.

    Google Scholar 

  29. Fry, C.M. and A.P. Sage, “Identification of Aircraft Stability and Control Parameters Using Hierarchical State Estimation”, IEEE Trans. Aero. Elect. Syst., vol. AES-10, pp. 255–264, 1974.

    Google Scholar 

  30. Guinzy, N.J. and A.P. Sage, “System Identification in Large Scale Systems with Hierarchical Structures”, J. Computers and Elect. Eng., vol. 1, pp. 23–43, 1973.

    Article  MATH  Google Scholar 

  31. Lee, E.S., “Quasilinearisation and Invariant Imbedding”, Academic Press, N.Y., 1968.

    Google Scholar 

  32. Chemoul, P., M.R. Katebi, D. Sastry and M.G. Singh, “Maximum a posteriori Parameter Estimation in Large-Scale Systems”, Automatica, vol. 17, pp. 845–851, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Mahmoud, M.S., Singh, M.G. (1984). State and Parameter Estimation. In: Discrete Systems. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82327-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82327-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82329-9

  • Online ISBN: 978-3-642-82327-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics