Detection of Hydrogen in Steel Using SIMS

  • T. Ohtsubo
  • K. Suzuki
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 36)


Hydrogen in steel causes various defects such as delayed fracture of high strength steel, delayed cracking of weldment, blistering of mild steel used in sour environment and UST defects in hot rolled plates. A number of studies [1] – [5] have been made to clarify the initiation and propagation processes of the hydrogen embrittlement ; however, the details of the microscopic process have not been revealed because the microscopic detection of hydrogen in steel was not successful.


Depth Profile High Strength Steel Hydrogen Embrittlement Titanium Hydride Titanium Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.M. Bernstein: Met. Trans. 1, 3143 (1970)Google Scholar
  2. 2.
    F. Nakasato and I.M. Bernstein: Met. Trans. 9A, 1317 (1978)Google Scholar
  3. 3.
    M. Nagumo, H. Morikawa, and K. Miyamoto: Proc. Second JIM International Symposium on Hydrogen in Metals, Suppl. Trans. JIM, 21, 405, (1980)Google Scholar
  4. 4.
    A. Goumelon: Mem. Sci. Rev. Mét., 72, 475, (1975)Google Scholar
  5. 5.
    A. Kimura, H. Matsui and H. Kimura: Proc. Second JIM International Symposium on Hydrogen in Metals, Suppl. Trans JIM, 21, 541 (1980)Google Scholar
  6. 6.
    J.F. Ziegler, C.P. Wu, P. Williams, C.W. White, B. Terreault, B.M.U. Scherzer, R.L. Schulte, E.JU. Schneid, C.W. Magee, E. Ligeon, J. L’Ecuyer, W.A. Lanford, F.J. Kuehne, E.A. Kamykowski, W.O. Hofer, A. Guivarch, G.L. Clark, W.K. Chu, C. Brassard, R.S. Blewer, R. Behrisch, B.R. Appleton, D.D. Allred: Nucl. Instrum. Methods, 149, 19 (1978)CrossRefGoogle Scholar
  7. 7.
    G.J. Clark, C.W. White, D.D. Allred, B.R. Appleton, F.B. Koch, C.W. Magee: Nucl. Instrum. Methods, 149 9 (1978)CrossRefGoogle Scholar
  8. 8.
    I.S.T. Tsong, A.C. McLaren, and B.E. Hobbs: Amer. Minelalogist, 63 921 (1976)Google Scholar
  9. 9.
    I.S.T. Tsong, R.B. Libert: Nucl. Instrum. Methods, 149 523 (1978)CrossRefGoogle Scholar
  10. 10.
    J.I. Whitton, J.B. Mitchell, T. Schober, and H. Wenzl: Acta Metall, 24, 483, (1976)CrossRefGoogle Scholar
  11. 11.
    N.J. Freeman and I.D. Latimer: Can. J. Phys., 46, 467 (1968)CrossRefGoogle Scholar
  12. 12.
    J.P. Laurent, G. Lapasset: Int. J. Appl. Radiation and Isotopes, 24. 214. (1973)Google Scholar
  13. 13.
    T. Asaoka, G. Lapasset, M. Aucouturier, P. Lacombe: Corrosion-NACE, 34, 39 (1978)Google Scholar
  14. 14.
    S.M. Toy, A. Philips: ibid., 26, 200 (1970)Google Scholar
  15. 15.
    T. Dingle, B.W. Griffiths and J.C. Ruckman: Vacuum 31 571 (1981)CrossRefGoogle Scholar
  16. 16.
    M. Kobayashi: Ph. D. Thesis, Tokyo Institute of Technology, 36, (1980)Google Scholar
  17. 17.
    T. Shiraiwa, N. Fujino, J. Murayama: Sumitomo Kinzoku, 26, 470, (1974)Google Scholar
  18. 18.
    P. Williams, C.A. Evans, Jr., M.L. Grossbeck, and H.K. Birnbaum: Anal. Chem., 48, 964, (1976)CrossRefGoogle Scholar
  19. 19.
    H. Liebl: J. Appl. Phys., 38, 5277, (1967)CrossRefGoogle Scholar
  20. 20.
    A. Benninghoven, K.H. Muller, C. Plog, M. Schemmer, and P. Steffens: Surface Science, 63, 103, (1977)CrossRefGoogle Scholar
  21. 21.
    A. Benninghoven: Surface Science, 35, 427, (1973)CrossRefGoogle Scholar
  22. 22.
    C.W. Magee, and E.M. Botnick: J. Vac. Sci. Technol. 19, 47, (1981)CrossRefGoogle Scholar
  23. 23.
    T.R. Lundquist, R.P. Burgner, P.R. Swann, and I.S.T., Tsong: Appl. Surf. Sci., 7, 2, (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • T. Ohtsubo
    • 1
  • K. Suzuki
    • 1
  1. 1.R&D Laboratories-I, Central R&D BureauNippon Steel CorporationKawasaki 211Japan

Personalised recommendations