Skip to main content

Ising Model Simulations of Crystal Growth

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 35))

Abstract

Kinetic Ising model simulations have elucidated many aspects of crystal growth. For example, studies of the motion of close-packed surfaces of perfect crystals provided evidence for a surface roughening transition, where the two-dimensional nucleation barrier disappears [13.1–3]. Competing mechanisms such as spiral growth and 2d nucleation have been simulated and the relative importance of the processes has been assessed [13.3,4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The surface roughening transition has been reviewed by H.J. Leamy, G.H. Gilmer, K.A. Jackson: In Surface Physics of Materials I, ed. by J.B. Blakeley ( Academic, New York 1975 ) p. 121;

    Google Scholar 

  2. J.D. Weeks: In Ordering in Strongly Fluctuating Condensed Matter Systems, ed. by T. Riste ( Plenum, New York 1980 ) p. 293

    Google Scholar 

  3. G.H. Gilmer, P. Bennema: J. Appl. Phys. 43, 1347 (1972);

    Article  CAS  Google Scholar 

  4. S.W.H. de Haan, V.J.A. Meeussen, B.P. Veltman, P. Bennema, C. van Leeuwen, G.H. Gilmer: J. Crystal Growth 24/25, 491 (1974)

    Google Scholar 

  5. A review of surface roughening and crystal growth kinetics in general is provided by J.D. Weeks, G.H. Gilmer: Advances in Chem. Phys. 40, 157 (1979).

    Google Scholar 

  6. J.P. van der Eerden, P. Bennema, T.A. Cherepanova: In Progress in Crystal Growth and Characterization 3, ed. by B.R. Pamplin ( Pergamon, Oxford 1979 ) p. 219

    Google Scholar 

  7. G.H. Gilmer: J. Crystal Growth 35, 15 (1976); and

    Google Scholar 

  8. R.H. Swendsen, P.J. Kortman, D.P. Landau, H. Müller-Krumbhaar: J. Crystal Growth 35, 73 (1976)

    Article  CAS  Google Scholar 

  9. J. Narayan, W.L. Brown, R.A. Lemons (eds): Laser-Solid Interactions and Transient Thermal Processing of Materials ( North-Holland, Amsterdam 1983 )

    Google Scholar 

  10. D. Furman, S. Dattagupta, R.B. Griffith: Phys. Rev. 815, 441 (1977)

    Google Scholar 

  11. F.L. Williams, D. Nason: Surf. Sci. 45, 377 (1974);

    Article  CAS  Google Scholar 

  12. U.S. Sundarum, P. Wynblatt: Surf. Sci. 52, 569 (1975);

    Article  Google Scholar 

  13. K. Binder, D. Stauffer, V. Wildpaner: Acta Met. (1978)

    Google Scholar 

  14. See Ref. [13.1], first citation, for a calculation of μ

    Google Scholar 

  15. P. Wynblatt, R.C. Ku: Surf. Sci. 65, 511 (1977);

    Article  CAS  Google Scholar 

  16. F.F. Abraham, N.-H. Tsai, G.M. Pound: Surf. Sci. 83, 406 (1979)

    Article  CAS  Google Scholar 

  17. W.K. Burton, N. Cabrera: Disc. Faraday Soc. 5, 33 (1949)

    Article  Google Scholar 

  18. K.A. Jackson: In Liquid Metals and Solidification ( American Society for Metals, Cleveland 1958 ) p. 174

    Google Scholar 

  19. G.H. Gilmer: Science 208, 355 (1980)

    Article  CAS  Google Scholar 

  20. J.D. Weeks, G.H. Gilmer, H.J. Leamy: Phys. Rev. Lett. 31, 549 (1973)

    Article  Google Scholar 

  21. J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28, 258 (1958);

    Article  CAS  Google Scholar 

  22. J.W. Cahn: J. Chem. Phys. 30, 1121 (1959); and

    Google Scholar 

  23. D.E. Temkin: Sov. Phys. Crystallogr. 14, 344 (1969)

    Google Scholar 

  24. S.T. Chui, J.D. Weeks: Phys. Rev. 814, 4978 (1976)

    Google Scholar 

  25. H. van Beijeren: Phys. Rev. Lett. 38, 993 (1977);

    Article  Google Scholar 

  26. H.J.F. Knops: Phys. Rev. Lett. 39, 766 (1977)

    Article  Google Scholar 

  27. G.H. Gilmer, J.D. Weeks: J. Chem. Phys. 68, 950 (1978)

    Article  CAS  Google Scholar 

  28. Approximation methods for calculating the properties of the Ising model, including the extent of the miscibility gap are discussed by T.L. Hill: In An Introduction to Statistical Mechanics (Addison-Wesley, Reading 1960) Chap. 14

    Google Scholar 

  29. A first-order transition was observed first by J.C. Shelton, H.R. Patil, J.M. Blakeley: Surf. Sci. 43 493 (1974), for carbon segregation to Ni111 surface; and by J.C. Hamilton, J.M. Blakeley: J. Vac. Sci. Technol. 15 559 (1978), for carbon on Pt111. Also P.C. Bettler, D.H. Bennum, C.M. Case: Surf. Sci. 44, 360 (1974), noted surface phase changes for carbon and silicon on tungsten

    Google Scholar 

  30. A simple mean-field theory for segregation that exhibited a first-order transition in the surface layer was presented by C.R. Helms: Surf. Sci. 69, 689 (1977); and a diffuse-interface model was described in a paper on critical-point wetting of fluids by J.W. C.hn: J. Chem. Phys. 66, 3667 (1977)

    Google Scholar 

  31. N. Cabrera: Z. Electrochemie 56, 294 (1952)

    CAS  Google Scholar 

  32. F.C. Frank: Discuss. Faraday Soc. 5, 48 (1949)

    Article  Google Scholar 

  33. Reproducible transient growth rates have been measured after the application of a potential during electrodeposition. See R. Roussinova, E. Budevski: J. Electrochem. Soc. 119, 1346 (1972)

    Google Scholar 

  34. G.H. Gilmer: J. Cryst. Growth 49, 465 (1980)

    Article  CAS  Google Scholar 

  35. G.H. Gilmer: J. Cryst. Growth 42, 3 (1977)

    Article  CAS  Google Scholar 

  36. A.A. Chernov: Sov. Phys.-Uspekhi 13, 101 (1970). A model for the trapping of impurities during crystal growth from the melt is given by K.A. Jackson, G.H. Gilmer, H.J. Leamy: In Laser and Electron Beam Processing of Materials, ed. by C.W. White, P.S. Peercy (Academic, New York 1982). Ising model simulations for laser-annealed silicon are described by G.H. Gilmer: [Ref. 13.5], p. 249

    Google Scholar 

  37. L.S. Hollister: Am. Mineral. 55, 742 (1970)

    CAS  Google Scholar 

  38. A.A. Chernov, J. Loomis: J. Phys. Chem. Solids 28, 2185 (1967). Also see A.A. Chernov: [Ref. 13.26]

    Google Scholar 

  39. E.M. Gyorgy, M.D. Sturge, L.G. van Uitert, E.J. Heilner, W.H. Grodkiewicz: J. Appl. Phys. 44, 438 (1973);

    Article  CAS  Google Scholar 

  40. R. Wolfe, R.C. Le Craw, S.L. Blank, R.D. Pierce: Appl. Phys. Lett. 29, 815 (1976)

    Article  CAS  Google Scholar 

  41. G.H. Gilmer, K.A. Jackson: In Crystal Growth and Materials, ed. by E. Kaldis, H.J. Scheel ( North-Holland, Amsterdam 1977 ) p. 80

    Google Scholar 

  42. M. Volmer: Die Kinetik der Phasenbildung ( Steinkopf, Dresden 1939 );

    Google Scholar 

  43. N. Stranski: Z. Physik Chem. 136, 259 (1928)

    CAS  Google Scholar 

  44. J.Q. Broughton, G.H. Gilmer, K.A. Jackson: Phys. Rev. Lett. 49, 1496 (1982)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilmer, G.H. (1984). Ising Model Simulations of Crystal Growth. In: Vanselow, R., Howe, R. (eds) Chemistry and Physics of Solid Surfaces V. Springer Series in Chemical Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82253-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82253-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82255-1

  • Online ISBN: 978-3-642-82253-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics