Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 35))

Abstract

Studies of crystal growth have been of scientific interest at least since the time of Gibbs, but an atomic view of the subject really began to emerge in the 1920s, through the work of Volmer, Stranski, and Kossel [12.1]. From these early investigations, largely based on visual observations or on studies with the light microscope, it became evident that growth from the vapor occurs in a series of steps, shown in Fig.12.1. Atoms from the vapor are captured at a crystal surface on colliding with it. To become part of the crystal they must still reach a growth site, that is a kink in a lattice step. At low supersaturations of the vapor, incorporation can occur only if the lifetime of the adatom on the flat terraces is long enough for the atom to diffuse to a step prior to evaporation. At higher vapor pressures the concentration of adatoms on the flat may be large enough to allow the creation of new nuclei, at which growth can then proceed [12.2]. All of these processes have been nicely illustrated in the Monte Carlo simulations reviewed by Gilmer [12.3]. The creation of epitaxial layers of a foreign material on a crystalline substrate is, however, more complicated [12.4]. As is stressed in van der Merwe’s review [12.5], epitaxy is significantly affected by the strength of the interactions between adatoms as well as between adatoms and substrate. Nevertheless, the atomic events in both crystal and overlayer growth involve the same steps:

condensation,

migration of adatoms,

atomic incorporation,

and formation of surface clusters.

Supported by the National Science Foundation under Grant NSF DMR 82-01884.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a sketch of the history, see F.C. Frank: Adv. Phys. 1, 91 (1952)

    Google Scholar 

  2. Crystal growth theories are reviewed by J.D. Weeks, G.H. Gilmer: Adv. Chem. Phys. 40, 157 (1979);

    Google Scholar 

  3. H. Müller-Krumbhaar: In Current Topics in Materials Science, Vol. 1, ed. by E. Kaldis ( North Holland, Amsterdam 1978 ) p. 1

    Google Scholar 

  4. G.H. Gilmer: This volume

    Google Scholar 

  5. The subject has been examined by R. Kern, G. Lelay, J J. Metois: In Current Topics in Materials Science, Vol. 3, ed. by E. Kaidis ( North-Holland, Amsterdam 1979 ) p. 131

    Google Scholar 

  6. J.H. Van der Merwe: This volume

    Google Scholar 

  7. For further details see G. Ehrlich: In Proceedings of the 9th International Vacuum Congress and 5th International Conf. on Solid Surfaces, ed. by J.L. de Segovia ( ASEVA, Madrid 1983 ) p. 3

    Google Scholar 

  8. The technique of field ion microscopy is described by E.W. Müller, T.T. Tsong: Field Ion Microscopy Principles and Applications ( American Elsevier, New York 1969 );

    Google Scholar 

  9. K.M. Bowkett, D.A. Smith: Field Ion Microscopy (North-Holland, Amsterdam 1970). For a recent review, see J.A. Panitz: J. Phys. E15, 1281 (1982)

    Google Scholar 

  10. M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A.V. Crewe: Proc. Natl. Acad. Sci. USA 74, 1802 (1977);

    Article  CAS  Google Scholar 

  11. A.V. Crewe: Science 221, 325 (1983)

    Article  CAS  Google Scholar 

  12. K. Takayanagi: Jpn. J. Appl. Phys. 22, L4 (1983)

    Article  Google Scholar 

  13. M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: Ultra-microscopy 1, 359 (1976);

    Article  CAS  Google Scholar 

  14. M. Utlaut: Phys. Rev. B22, 4650 (1980)

    Article  CAS  Google Scholar 

  15. K. Takayanagi: Ultramicroscopy 8, 145 (1982)

    Article  CAS  Google Scholar 

  16. M.J. Yacaman: This volume

    Google Scholar 

  17. G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Appl. Phys. Lett. 40, 178 (1982);

    Article  Google Scholar 

  18. G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett. 49, 57 (1982);

    Article  Google Scholar 

  19. G. Binniq, H. Rohrer, Ch. Gerber, E. Weibel: Phys. Rev. Lett. 50, 120 (1983);

    Article  Google Scholar 

  20. G. Binnig, H. Rohrer: Heiv. Phys. Acta 55, 726 (1982);

    CAS  Google Scholar 

  21. G. Binnig, H. Rohrer: Phys. B1. 39, 16 (1983);

    Google Scholar 

  22. G. Binnig, H. Rohrer: Surf. Sci. 126, 236 (1983)

    Article  CAS  Google Scholar 

  23. R. Young, J. Ward, F. Scire: Rev. Sci. Instrum. 43, 999 (1972)

    Article  Google Scholar 

  24. M.W. Roberts, C.S. McKee: Chemistry of the Metal-Gas Interface (Clarendon, Oxford 1978) Sect. 8. 2

    Google Scholar 

  25. G. Ehrlich: Brit. J. Appl. Phys. 15, 349 (1964).

    Article  CAS  Google Scholar 

  26. T. Gurney, Jr., F. Hutchinson, R.D. Young: J. Chem. Phys. 42 3939 (1965); and

    Google Scholar 

  27. R.D. Young, D.C. Schubert: J. Chem. Phys. 42, 3943 (1965)

    Article  CAS  Google Scholar 

  28. G. Ehrlich, C.F. Kirk: J. Chem. Phys. 48, 1465 (1968)

    Article  CAS  Google Scholar 

  29. E.W. Plummer, T.N. Rhodin: J. Chem. Phys. 49, 3479 (1968)

    Article  CAS  Google Scholar 

  30. R. Gomer, L.W. Swanson: J. Chem. Phys. 38, 1613 (1963);

    Article  CAS  Google Scholar 

  31. T.T. Tsong, E.W. Müller: Phys. Stat. Solidi A1, 513 (1970);

    Article  CAS  Google Scholar 

  32. R.G. Forbes: Surf. Sci. 102, 255 (1981);

    Article  Google Scholar 

  33. U.R. Kingham: Vacuum 32, 471 (1982)

    Article  CAS  Google Scholar 

  34. For reviews of the subject, see G. Ehrlich, K. Stolt: Annu. Rev. Phys. Chem. 31, 603 (1980); also

    Google Scholar 

  35. D.W. Bassett: In Surface Mobilities on Solid Materials, ed. by Vu Thien Binh ( Plenum, New York 1983 ) p. 63

    Google Scholar 

  36. K. Stolt, W.R. Graham, G. Ehrlich: J. Chem. Phys. 65, 3206 (1976)

    Article  CAS  Google Scholar 

  37. G. Ehrlich, F.G. Hudda: J. Chem. Phys. 44 1039 (1966); also

    Google Scholar 

  38. W.R. Graham, G. Ehrlich: Thin Solid Films 25, 85 (1975)

    Article  CAS  Google Scholar 

  39. G. Ehrlich: J. Vac. Sci. Technol. 17, 9 (1980)

    Article  CAS  Google Scholar 

  40. G. Ayrault, G. Ehrlich: J. Chem. Phys. 60, 281 (1974)

    Article  CAS  Google Scholar 

  41. D.W. Bassett, P.R. Weber: Surf. Sci. 70, 520 (1978)

    Article  CAS  Google Scholar 

  42. John D. Wrigley, Jr.: Surface Diffusion by an Atomic Exchange Mechanism, Coordinated Science Lab., Univ. of Illinois at Urbana, Report T-115, July 1982;

    Google Scholar 

  43. J.D. Wrigley, G. Ehrlich: Phys. Rev. Lett. 44, 661 (1980)

    Article  CAS  Google Scholar 

  44. For early work of this type, see M. Drechsler: Z. Elektrochem. 58, 327 (1954)

    Google Scholar 

  45. D.W. Bassett: Surf. Sci. 53, 74 (1975);

    Article  CAS  Google Scholar 

  46. D.W. Bassett, C.K. Chung, D. Tice: Vide 176, 39 (1975)

    Google Scholar 

  47. S.-C. Wang, T.T. Tsong: Surf. Sci. 121, 85 (1982)

    Article  CAS  Google Scholar 

  48. H.-W. Fink, G. Ehrlich: 43rd Annual Conference on Physical Electronics, Santa Fe, New Mexico, June 1983

    Google Scholar 

  49. K. Stolt, J.D. Wrigley, G. Ehrlich: J. Chem. Phys. 69, 1151 (1978)

    Article  CAS  Google Scholar 

  50. D.A. Reed, G. Ehrlich: Philos. Mag. 32, 1095 (1975)

    Article  CAS  Google Scholar 

  51. D.A. Reed: Studies of Surface Diffusion, Ph.D. Thesis, Univ. of Illinois at Urbana, 1980

    Google Scholar 

  52. K. Stolt, G. Ehrlich: Abstracts, TMS-AIME Fall Meeting, Milwaukee, WI, September 1979

    Google Scholar 

  53. H.-W. Fink, G. Ehrlich: 42nd Annual Conference on Physical Electronics, Atlanta, GA, June 1982

    Google Scholar 

  54. D.W. Bassett, D.R. Tice: In The Physical Basis of Heterogeneous Catalysis, ed. by E. Drauglis and R.I. Jaffee (Plenum, New York 1975), p. 231. It should be noted that the presence of clusters in FIM images was first noted by D.W. Bassett: Surf. Sci. 23, 240 (1970)

    Google Scholar 

  55. H.-W. Fink: Atomistik der Monolagenbildung, Ph.D. Thesis, Technical University Munich, 1982

    Google Scholar 

  56. D.W. Bassett: Thin Solid Films 48, 237 (1978)

    Article  CAS  Google Scholar 

  57. H.-W. Fink, G. Ehrlich: Surf. Sci. 110, L611 (1981)

    Article  CAS  Google Scholar 

  58. T.T. Tsong, R. Casanova: Phys. Rev. Lett. 47, 113 (1981)

    Article  CAS  Google Scholar 

  59. H.-W. Fink: Private communication

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrlich, G. (1984). An Atomic View of Crystal Growth. In: Vanselow, R., Howe, R. (eds) Chemistry and Physics of Solid Surfaces V. Springer Series in Chemical Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82253-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82253-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82255-1

  • Online ISBN: 978-3-642-82253-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics