Skip to main content

Knochenmark

  • Chapter

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((HDBRADIOL,volume 20))

Zusammenfassung

Eine umfassende Beurteilung der Strahlenempfindlichkeit des Knochenmarks und der klinischen Konsequenzen, die sich nach verschiedenen Formen einer Strahleneinwirkung aus der Störung der Blutzellbildung ergeben, muß von Kenntnissen der Struktur und Funktion dieses komplexen Organs ausgehen. Deshalb soll diesem Kapitel eine kurze Beschreibung der Biologie des Knochenmarks vorangestellt werden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ainsworth EJ, Fry RJM, Williamson FS, Kisielski WE, Jordan DL, O’Malley MP, Miller M, Cooke EM, Sallese A, Brennan PC (1971) Relative biological effectiveness of neutrons from the Janus reactor. Argonne National Laboratory Report ANL-7870, pp 19–26

    Google Scholar 

  • Ainsworth EJ, Fry RJM, Grahn D, Williamson FS, Rust JH, Brennan PC, Carrano AV, Jordan DL, Miller M, Allen KH, Nielsen MP, Cooke E, Staffeldt E, Sallese A (1972) Progress of JM-2 and related neutron- and gamma-radiation toxicity studies. Argonne National Laboratory Report ANL-7970, pp 13–29

    Google Scholar 

  • Ainsworth EJ, Fry RJM, Jordan DL, Sallese AR (1973) Radiation sensitivity and recovery: strain differences, age sensitivity, and split-dose recovery studies. Argonne National Laboratory Report ANL-8070, pp 10–12

    Google Scholar 

  • Ainsworth EJ, Jordan DL, Miller M, Cooke EM, Hulesch JS (1976) Dose rate studies with fission spectrum neutrons. Radiat Res 67:30–45

    Article  PubMed  CAS  Google Scholar 

  • Alpen EL, Shill OS, Tochilin E (1960) The effects of total-body irradiation of dogs with simulated fission neutrons. Radiat Res 12:237–250

    Article  PubMed  CAS  Google Scholar 

  • Barendsen GW (1981) The influence of dose fractionation and dose rate on normal tissue responses. Annual Report 1981, Radiobiological Institute TNO, Institute for Experimental Gerontology TNO, Primate Center TNO, Rijswijk, pp 13–16

    Google Scholar 

  • Bateman JL, Bond VP, Robertson JS (1962) Dose-rate dependence of early radiation effects in small mammals. Radiology 79:1008–1014

    PubMed  CAS  Google Scholar 

  • Baumann B, Muth H (1977) Zur Frage der Erholungsfähigkeit von Säugetieren nach akuter subletaler Ganzkörperbestrahlung mit energiereichen Strahlen unter Berücksichtigung des jugendlichen Organismus. In: Messerschmidt O, Möhrle G, Zimmer R, Holeczke F, Kainberger F, Kärcher KH, Mader H, Seyss R (Hrsg) Vorsorgemedizin und Strahlenschutz (Risiko/Nutzen-Analyse). Erholungsvorgänge nach Strahleneinwirkung. Medizinische Aspekte der Strahlenschutzgesetzgebung in verschiedenen europäischen Ländern. Thieme, Stuttgart (Strahlenschutz in Forschung und Praxis, Bd XVIII, S 35–45)

    Google Scholar 

  • Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted bone marrow cells. Nature 197:452–454

    Article  PubMed  CAS  Google Scholar 

  • Becker AJ, McCulloch EA, Siminovitch L, Till JE (1965) The effects of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 26: 296–308

    PubMed  CAS  Google Scholar 

  • Blackett NM, Roylance PJ, Adams K (1964) Studies on the capacity of bone-marrow cells to restore erythropoiesis in heavily irradiated rats. Br J Haematol 10:453–467

    Article  PubMed  CAS  Google Scholar 

  • Boggs SS, Boggs DR (1975) Earlier onset of hematopoietic differentiation after expansion of the endogenous stem cell pool. Radiat Res 63:165–173

    Article  PubMed  CAS  Google Scholar 

  • Boll I (1978) Das granulozytäre Zellsystem. In: Queisser W (Hrsg) Das Knochenmark — Morphologie Funktion Diagnostik. Thieme, Stuttgart, S 167–192

    Google Scholar 

  • Bond VP (1964) Comparison of the mortality response of different mammalian species to X-rays and fast neutrons. In: International Atomic Energy Agency (ed) Biological effects of neutron and proton irradiations, vol II. IAEA, Vienna, pp 365–377

    Google Scholar 

  • Bond VP (1969) Radiation mortality in different mammalian species. In: Bond VP, Sugahara T (eds) Comparative cellular and species radio-sensitivity. Igaku Shoin, Tokyo, pp 5–19

    Google Scholar 

  • Bond VP, Robinson CV (1967) A mortality determinant in nonuniform exposures of the mammal. Radiat Res [Suppl] 7:265–275

    Article  CAS  Google Scholar 

  • Bond VP, Swift MN, Allen AC, Fishier MC (1950) Sensitivity of abdomen of rat to X-irradiation. Am J Physiol 161: 323–330

    PubMed  CAS  Google Scholar 

  • Bond VP, Carter RE, Robertson JS, Seymour PH, Hechter HH (1956) The effects of total-body fast neutron irradiation in dogs. Radiat Res 4:139–153

    Article  PubMed  CAS  Google Scholar 

  • Bond VP, Fliedner TM, Archambeau JO (1965) Mammalian radiation lethality. A disturbance in cellular kinetics. Academic Press, New York London

    Google Scholar 

  • Briganti G, Mauro F (1979) Differences in radiation sensitivity in subpopulations of mammalian multicellular systems. Int J Radiat Oncol Biol Phys 5:1095–1101

    PubMed  CAS  Google Scholar 

  • Broerse JJ (1969) Dose-mortality studies for mice irradiated with X-rays, gamma-rays and 15 MeV neutrons. Int J Radiat Biol 15:115–124

    Article  CAS  Google Scholar 

  • Broerse JJ, Barendsen GW (1973) Relative biological effectiveness of fast neutrons for effects on normal tissues. Curr Top Radiat Res Quarterly 8: 305–350

    CAS  Google Scholar 

  • Broerse JJ, Engels AC, Lelieveld P, Putten LM van, Duncan W, Greene D, Massey JB, Gilbert CW, Hendry JH, Howard A (1971) The survival of colony-forming units in mouse bone marrow after in vivo irradiation with D-T neutrons, X- and gamma-radiation. Int J Radiat Biol 19:101–110

    Google Scholar 

  • Broerse JJ, Bekkum DW van, Hollander CF, Davids JAG (1978) Mortality of monkeys after exposure to fission neutrons and the effect of autologous bone marrow transplantation. Int J Radiat Biol 34:253–264

    Google Scholar 

  • Caffrey RW, Everett NB, Rieke WO (1966) Radioautographic studies of reticular and blast cells in the hemopoietic tissues of the rat. Anat Rec 55:41–58

    Article  Google Scholar 

  • Carsten AL, Noonan TR (1964)- Hematological effects of partial-body and whole-body X-irradiation in the rat. Radiat Res 22:136–143

    Google Scholar 

  • Carter RE, Bond VP, Seymour PH (1956) The relative biological effectiveness of fast neutrons in mice. Radiat Res 4:413–423

    Article  PubMed  CAS  Google Scholar 

  • Casarett GW (1969) Patterns of recovery from large single-dose exposure to radiation. In: Bond VP, Sugahara T (eds) Comparative cellular and species radiosensitivity. Igaku Shoin, Tokyo, pp 42–52

    Google Scholar 

  • Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18:78–87

    Article  PubMed  CAS  Google Scholar 

  • Chervenick PA, Boggs DR (1971) Patterns of proliferation and differentiation of hematopoietic stem cells after compartment depletion. Blood 37:568–580

    PubMed  CAS  Google Scholar 

  • Cline MJ, Golde DW (1979) Controlling the production of blood cells. Blood 53:157–165

    PubMed  CAS  Google Scholar 

  • Coggle JE (1980) Absence of late radiation effects on bone marrow stem cells. Int J Radiat Biol 38:589–595

    Article  CAS  Google Scholar 

  • Coggle JE, Gordon MY (1975) Quantitative measurements on the haemopoietic systems of three strains of mice. Exp Hematol 3:181–186

    PubMed  CAS  Google Scholar 

  • Cole LJ, Haire HM, Alpen EL (1967) Partial shielding of dogs: effectiveness of small external epicondylar lead cuffs against lethal X-irradiation. Radiat Res 32: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Croizat H, Frindel E, Tubiana M (1979) Long-term radiation effects on the bone marrow stem cells of C3H mice. Int J Radiat Biol 36:91–99

    Article  CAS  Google Scholar 

  • Croizat H, Frindel E, Tubiana M (1980) The effect of partial body irradiation on haemopoietic stem cell migration. Cell Tissue Kinet 13:319–325

    PubMed  CAS  Google Scholar 

  • Cronkite EP, Bond VP (1960) Diagnosis of radiation injury and analysis of the human lethal dose of radiation. US Armed Forces Med J 11:249–260

    CAS  Google Scholar 

  • Cronkite EP, Fliedner TM (1972) The radiation syndromes. In: Hug O, Zuppinger A (Hrsg) Strahlenbiologie 3. Handbuch der medizinischen Radiolo- gie, Bd II/3. Springer, Berlin Heidelberg New York, S 299–339

    Google Scholar 

  • Crosfill ML, Lindop PJ, Rotblat J (1959) Variation of sensitivity to ionizing radiation with age. Nature 183:1729–1730

    Article  PubMed  CAS  Google Scholar 

  • Davids JAG (1970) Bone marrow syndrome in CBA mice exposed to fast neutrons of 1.0 MeV mean energy. Effect of syngeneic bone marrow transplantation. Int J Radiat Biol 17:173–185

    Article  CAS  Google Scholar 

  • Davids JAG (1973) Acute effects of 1-MeV fast neutrons on the haematopoietic tissues, intestinal epithelium and gastric epithelium in mice. In: Du-plan JF, Chapiro A (eds) Advances in radiation research, vol 2. Gordon and Breach Science Publishers, New York London Paris, pp 565–576

    Google Scholar 

  • DeGowin RL, Chaudhuri TK, Cristie JH, Callis MN, Mueller AL (1974) Marrow scanning in evaluation of hemopoiesis after radiotherapy. Arch Intern Med 134:297–303

    Article  PubMed  CAS  Google Scholar 

  • Dexter TM, Spooncer E, Hendry J, Lajtha LG (1978) Stem cells in vitro. In: Golde DW, Cline MJ, Metcalf D, Fox CF (eds) Hematopoietic cell differentiation. ICN-UCLA Symposia on Molecular and Cellular Biology, vol X. Academic Press, New York San Francisco London, pp 163–173

    Google Scholar 

  • Dörmer P (1978) Das erythrozytäre Zellsystem. In: Queisser W (Hrsg) Das Knochenmark — Morphologie Funktion Diagnostik. Thieme, Stuttgart, S 150–166

    Google Scholar 

  • Drasil V, Juraskova V, Koukalova B (1975) The influence of continuous irradiation on the colony forming activity of mouse bone-marrow. Int J Radiat Biol 11: 613–614

    Article  Google Scholar 

  • Eltringham JR (1967) Recovery of the rhesus monkey from an acute radiation exposure as evaluated by the split-dose technique: Preliminary results. Radiat Res 31:533 (Abstract)

    Google Scholar 

  • Faille A, Maraninchi D, Gluckman E, Devergie A, Balitrand N, Ketels F, Dresch C (1981) Granulocyte progenitor compartments after allogeneic bone marrow grafts. Scand J Haematol 26:202–214

    Article  PubMed  CAS  Google Scholar 

  • Fauser AA, Messner HA (1978) Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood 52:1243–1248

    PubMed  CAS  Google Scholar 

  • Fauser AA, Messner HA (1979) Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation. Blood 54:1197–1200

    PubMed  CAS  Google Scholar 

  • Fliedner TM (1973) Pathophysiologie der Strahlenempfindlichkeit des Knochenmarks. In: Braun H, Heuck F, Ladner HA, Messerschmidt O, Musshof K, Streffer C (Hrsg) Strahlenempfindlichkeit von Organen und Organsystemen der Säugetiere und des Menschen. Strahlenschutz in Forschung und Praxis, Bd XIII. Thieme, Stuttgart, S 28–48

    Google Scholar 

  • Fliedner TM (1974) Kinetik und Regulationsmechanismen des Granulozytenumsatzes. Schweiz Med Wochenschr 104:98–107

    PubMed  CAS  Google Scholar 

  • Fliedner TM, Calvo W (1978) Hematopoietic stem-cell seeding of a cellular matrix: a principle of initiation and regeneration of hematopoiesis. In: Cold Spring Harbor Conferences on Cell Proliferation, vol 5. Clarkson B, Marks PA, Till JE (eds) Differentiation of normal and neoplastic hematopoietic cells, book B. Cold Spring Harbor Laboratory, pp 757–773

    Google Scholar 

  • Fliedner TM, Flad HD, Bruch C, Calvo W, Goldmann S, Herbst E, Hügl E, Huget R, Körbling M, Krumbacher K, Nothdurft W, Ross WM, Schnappauf HP, Steinbach I (1976) Treatment of aplastic anemia by blood stem cell transfusion: a canine model. Haematologica 61:141–156

    PubMed  CAS  Google Scholar 

  • Fliedner TM, Steinbach KH, Raffler H (1977) Erholungsvorgänge im Stammzellenbereich des Knochenmarkes nach Strahleneinwirkung. In: Messerschmidt O, Möhrle G, Zimmer R, Holeczke F, Kainberger F, Kärcher KH, Mader H, Seyss R (Hrsg) Vorsorgemedizin und Strahlenschutz (Risiko/Nutzen-Analyse). Erholungsvorgänge nach Strahleneinwirkung. Medizinische Aspekte der Strahlenschutzgesetzgebung in verschiedenen europäischen Ländern. Strahlenschutz in Forschung und Praxis, Bd XVIII. Thieme, Stuttgart, S 4–20

    Google Scholar 

  • Fliedner TM, Hoelzer D, Steinbach KH (1978) Physiologische und pathologische Regulation der Erythropoese. Verh Dtsch Ges Inn Med 84:15–27

    PubMed  CAS  Google Scholar 

  • Fritz TE, Norris WP, Tolle DV, Seed TM, Poole CM, Lombard LS, Doyle DE (1978) Relationship of dose rate and total dose to responses of continuously irradiated beagles. In: International Atomic Energy Agency (ed) Late biological effects of ionizing radiation, vol II. IAEA, Vienna, pp 71–82

    Google Scholar 

  • Garner RJ, Phemister RD, Angleton GM, Lee AC, Thomassen RW (1974) Effect of age on the acute lethal response of the beagle to Cobalt-60 gamma radiation. Radiat Res 58:190–195

    Article  PubMed  CAS  Google Scholar 

  • Gerber GB, Maes J (1980) Stem cell kinetics in spleen and bone marrow after single and fractionated irradiation of infant mice. Radiat Environ Biophys 18: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Gidali J (1975) Response of stem cell system to whole body and partial body irradiation. In: Nygaard OF, Adler HJ, Sinclair WS (eds) Radiation research. Academic Press, New York San Francisco London, pp 788–796

    Google Scholar 

  • Gidali J, Feher I, Antal S (1974) Some properties of circulating hemopoietic stem cells. Blood 43:573–580

    PubMed  CAS  Google Scholar 

  • Gidali J, Bojtor I, Feher I (1979) Kinetic basis for compensated hemopoiesis during continuous irradiation with low doses. Radiat Res 77:285–291

    Article  PubMed  CAS  Google Scholar 

  • Goldman JM (1980) Haemopoietic stem cell auto-grafts for leukaemia. Blut 41:71–79

    Article  PubMed  CAS  Google Scholar 

  • Goswitz FA, Andrews GA, Kniseley RM (1963) Effects of local irradiation (Co60 teletherapy) on the peripheral blood and bone marrow. Blood 21:605–619

    PubMed  CAS  Google Scholar 

  • Guzman E, Lajtha LG (1970) Some comparisons of the kinetic properties of femoral and splenic haemopoietic stem cells. Cell Tissue Kinet 3:91–98

    PubMed  CAS  Google Scholar 

  • Haas RJ (1971) Die Rolle zytokinetisch ruhender Zellen für die Regeneration eines aplastischen Knochenmarkes. Autoradiographische Untersuchungen an der Ratte. Aerztl Forsch 25:185–194

    PubMed  CAS  Google Scholar 

  • Haas RJ, Bohne F, Fliedner TM (1971) Cytokinetic analysis of slowly proliferating bone marrow cells during recovery from radiation injury. Cell Tissue Kinet 4:31–45

    PubMed  CAS  Google Scholar 

  • Hendry JH (1972) The response of haemopoietic colony-forming units and lymphoma cells irradiated in soft tissue (spleen) or a bone cavity (femur) with single doses of X rays, y rays or D-T neutrons. Br J Radiol 45:923–932

    Article  PubMed  CAS  Google Scholar 

  • Hendry JH (1973) Differential split-dose radiation response of resting and regenerating haemopoietic stem cells. Int J Radiat Biol 24:469–473

    Article  CAS  Google Scholar 

  • Hendry JH (1979) The dose-dependence of the split-dose response of marrow colony-forming units (CFU-S): similarities to other tissues. Int J Radiat Biol 36: 631–636

    Article  CAS  Google Scholar 

  • Hendry JH, Howard A (1971) The response of haemopoietic colony-forming units to single and split doses of y-rays or D-T neutrons. Int J Radiat Biol 19:51–64

    Article  CAS  Google Scholar 

  • Hendry JH, Lajtha LG (1972) The response of hemopoietic colony-forming units to repeated doses of X-rays. Radiat Res 52:309–315

    Article  PubMed  CAS  Google Scholar 

  • Hendry JH, Lajtha LG (1975) Response of mouse bone marrow to low dose rates, split acute doses, and multiple daily fractions. In: Alper T (ed) Cell survival after low doses of radiation: Theoretical and clinical implications. The Institute of Physics, Wiley, Bristol, pp 308–312

    Google Scholar 

  • Hendry JH, Potten CS (1974) Cryptogenic cells and proliferative cells in intestinal epithelium. Int J Radiat Biol 25: 583–588

    Article  CAS  Google Scholar 

  • Hendry JH, Testa NG, Lajtha LG (1974) Effect of repeated doses of X-rays or 14 MeV neutrons on mouse bone marrow. Radiat Res 59:645–652

    Article  PubMed  CAS  Google Scholar 

  • Heyden HW von (1978) Die ortsständigen Knochenmarkzellen. In: Queisser W (Hrsg) Das Knochenmark — Morphologie Funktion Diagnostik. Thieme, Stuttgart, S 99–107

    Google Scholar 

  • Hill DR, Benak SB, Phillips TL, Price DC (1980) Bone marrow regeneration following fractionated radiation therapy. Int J Rad Oncol Biol Phys 6:1149–1155

    Article  CAS  Google Scholar 

  • Hornsey S (1967) The recovery process in organized tissue. In: Silini G (ed) Radiation research. North-Holland Publishing, Amsterdam, pp 587–603

    Google Scholar 

  • Hornsey S, Vatistas S, Bewley DK, Parnell CJ (1965) The effect of fractionation on four day survival of mice after whole-body neutron irradiation. Br J Radiol 38:878–880

    Article  PubMed  CAS  Google Scholar 

  • Hübner GE, Wangenheim K-H von, Feinendegen LE (1981) An assay for the measurement of residual damage of murine hematopoietic stem cells. Exp Hematol 9:111–117

    Google Scholar 

  • IAEA Safety Series No 47 (1978) Manual on Early Medical Treatment of Possible Radiation Injury. With an appendix on sodium burns. International Atomic Energy Agency, Vienna

    Google Scholar 

  • International Commission on Radiological Protection No 23 (1974) Report of the task group on reference man. Pergamon Press, Oxford New York Toronto Sydney Braunschweig, pp 85–98

    Google Scholar 

  • Iscove NN (1978) Regulation of proliferation and maturation at early and late stages of erythroid differentiation. In: Saunders GF (ed) Cell differentiation and neoplasia. Raven Press, New York, pp 195–209

    Google Scholar 

  • Jablon S, Fujita S, Fukushima K, Ishimaru T, Auxier JA (1969) RBE of neutrons in Japanese survivors. In: Symposium on Neutrons in Radiobiology. US Atomic Energy Commission Rep Conf 691106, pp 547–579

    Google Scholar 

  • Jacobson LO, Simmons EL, Bethard WF, Marks EK, Robson MJ (1950) The influence of the spleen on hematopoietic recovery after irradiation injury. Proc Soc Exp Biol Med 73:455–459

    CAS  Google Scholar 

  • Kallman RF, Silini G (1964) Recuperation from lethal injury by whole-body irradiation. I Kinetic aspects and the relationship with conditioning dose in C57B1 mice. Radiat Res 22:622–642

    Article  PubMed  CAS  Google Scholar 

  • Kaplan HS, Brown MB (1952) Mortality of mice after total-body irradiation as influenced by alteration in total dose, fractionation, and periodicity of treatment. J Natl Cancer Inst 12: 756–775

    Google Scholar 

  • Keyserlingk DG von (1978) Anatomie des Knochenmarks. In: Queisser W (Hrsg) Das Knochenmark - Morphologie Funktion Diagnostik. Thieme, Stuttgart, S 78–95

    Google Scholar 

  • Kindt A, Sattler EL (1977) Literaturübersicht zur Frage der Erholung nach Ganzkörperbestrahlung. Bundesamt für Zivilschutz (Hrsg) Zivilschutzforschung, Bd 6. Osang, Bad Honnef-Erpel

    Google Scholar 

  • Knospe WH, Blom J, Crosby WH (1966) Regeneration of locally irradiated bone marrow. I Dose dependent, long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood 28:398–415

    PubMed  CAS  Google Scholar 

  • Knospe WH, Rayudu VM, Cardello M, Friedman AM, Fordham EW (1976) Bone marrow scanning with 52iron (52Fe). Regeneration and extension of marrow after ablative dose of radiotherapy. Cancer 37:1432–1442

    Article  PubMed  CAS  Google Scholar 

  • Körbling, M, Burke P, Braine H, Elfenbein G, Santos G, Kaizer H (1981) Successful engraftment of blood derived normal hemopoietic stem cells in chronic myelogenous leukemia. Exp Hematol 9:684–690

    PubMed  Google Scholar 

  • Krebs JS, Brauer RW (1952) Residual injury caused by irradiation with fast neutrons. Radiat Res 11:855–863

    Google Scholar 

  • Krebs JS, Brauer RW (1964) Comparative accumulation of injury from X-, gamma and neutron irradiation — the position of theory and experiment. In: International Atomic Energy Agency (ed) Biological effects of neutron and proton irradiation, vol II. IAEA, Vienna, pp 347–364

    Google Scholar 

  • Krokowski E, Taenzer V (1966) Der radiogene Strah- lenschutzeffekt. Strahlentherapie 130:139–145

    PubMed  CAS  Google Scholar 

  • Lajtha LG (1979) Stem cell concepts. Differentiation 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Lajtha LG, Pozzi LV, Schofield R, Fox M (1969) Kinetic properties of hemopoietic stem cells. Cell Tissue Kinet 2:39–49

    Google Scholar 

  • Lahiri SK (1976) Kinetics of haemopoietic recovery in endotoxin-treated mice. Cell Tissue Kinet 9:31–39

    PubMed  CAS  Google Scholar 

  • Lamerton LF (1966) Cell proliferation under continuous irradiation. Radiat Res 27:119–138

    Article  CAS  Google Scholar 

  • Lamerton LF (1968) Radiation biology and cell population kinetics (The Tenth Douglas Lea Memorial Lecture). Phys Med Biol 13:1–14

    Article  PubMed  CAS  Google Scholar 

  • Lamerton LF, Pontifex AH, Blackett NM, Adams K (1960) Effects of protracted irradiation on the blood-forming organs of the rat. Part I Continuous Exposure. Br J Radiol 33:287–301

    Article  PubMed  CAS  Google Scholar 

  • Langendorff H, Langendorff M, Metzner R, Mönig H, Steinbach K-H, Tumbrägel G (1970) Radio-biological investigations with fast neutrons. I Comparative investigations on the mortality of male mice after an irradiation with 15 MeV-neutrons and 60Co-y-rays. Atomkernenergie 16:255–260

    Google Scholar 

  • Langendorff H, Langendorff M, Mönig H (1973) Die Änderung der Strahlenempfindlichkeit der Maus nach Vorbestrahlung mit schnellen Neutronen oder Röntgenstrahlen. Strahlentherapie 146: 327–338

    PubMed  CAS  Google Scholar 

  • Langham WH (ed) (1967) Radiobiological factors in manned space flight. National Academy of Sciences, National Research Council, Washington DC

    Google Scholar 

  • Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9: 391–410

    Google Scholar 

  • Loewe WE, Mendelsohn E (1981) Revised dose estimates at Hiroshima and Nagasaki. Health Phys 41:663–666

    PubMed  CAS  Google Scholar 

  • Lord BI (1975) Cell proliferation changes in hemopoietic tissue as a result of irradiation or drug administration: the control of cell proliferation in hemopoietic tissue. In: Nygaard OF, Adler HI, Sinclair WK (eds) Radiation research. Academic Press, New York San Francisco London, pp 826–833

    Google Scholar 

  • Lushbaugh CC (1969) Reflections on some recent progress in human radiobiology. In: Augenstein LC, Mason R, Zelle M (eds) Advances in radiation biology, vol 3. Academic Press, New York London, pp 277–314

    Google Scholar 

  • Lushbaugh CC (1974) Human radiation tolerance. In: Tobias CA, Todd P (eds) Space radiation bi- ology and related topics. Academic Press, New York London, pp 475–522

    Google Scholar 

  • Maloney MA, Patt HM (1972 a) Migration of cells from shielded to irradiated marrow. Blood 39:804–808

    Google Scholar 

  • Maloney MA, Patt HM (1972b) Persistent marrow hypocellularity after local irradiation of the rabbit femur with 1000 rad. Radiat Res 50:284–292

    Article  Google Scholar 

  • Maloney MA, Patt HM (1978) Marrow stem cell release in the autorepopulation assay. Exp Hematol 6:227–232

    PubMed  CAS  Google Scholar 

  • Martinez RG, Cassab GH, Ganem GG, Guttman KE, Lieberman ML, Vater LB, Linares MM, Rodriguez HM (1964) Accident from radiation: observations on the accidental exposure of a family to a source of Cobalt-60. Rev Med Inst Mex Seguro Soc 3 [Suppl] 1:14–69 (English translation by Comas FV)

    Google Scholar 

  • McCulloch EA, Till JE (1962) The sensitivity of cells from normal mouse bone marrow to gamma radiation in vitro and in vivo. Radiat Res 16:822–832

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (1972) Effect of thymidine suiciding on colony formation in vitro by mouse hematopoietic cells. Proc Soc Exp Biol Med 139:511–514

    Google Scholar 

  • Metcalf D, Moore MAS (1971) Haemopoietic Cells. North-Holland Publishing, Amsterdam London

    Google Scholar 

  • Micklem HS, Anderson N, Ross E (1975) Limited potential of circulating haemopoietic stem cells. Nature 256:41–43

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi H, Kubota K, Miura Y, Takaku F (1979) An improved plasma culture system for the production of megakaryocyte colonies in vitro. Exp Hematol 7: 345–351

    Google Scholar 

  • Mole RH (1957) Quantitative observations on recovery from whole body irradiation in mice. II Recovery during and after daily irradiation. Br J Radiol 30:40–46

    Article  PubMed  CAS  Google Scholar 

  • Mole RH (1975) Deductions about survival curve parameters from iso-effect radiation regimes: observations on lethality after whole-body irradiation of mice. In: Alper T (ed) Cell survival after low doses of radiation. The Institute of Physics. Wiley, Bristol, pp 299–303

    Google Scholar 

  • Mönig H (1978) Biologische Wirkungen von Neutronen bei Säugetieren und beim Menschen. In: Bundesamt für Zivilschutz (Hrsg) Zivilschutzforschung, Bd 8. Osang, Bad Honnef-Erpel, S 39–65

    Google Scholar 

  • Nachtwey DS, Ainsworth EJ, Leong GF (1967) Recovery from irradiation injury in swine as evaluated by the split-dose technique. Radiat Res 31:353–367

    Article  Google Scholar 

  • Nakeff A, McLellan WL, Bryan J, Valeriote FA (1979) Response of megakaryocyte, erythroid, and granulocyte-macrophage progenitor cells in mouse bone marrow to gamma-irradiation and cyclophosphamide. In: Baum J, Ledney GD (eds) Experimental hematology today. Springer, Berlin Heidelberg New York, pp 99–104

    Google Scholar 

  • NCRP Report No 39 (1974) Basic radiation protection criteria, 2nd reprinting. National Council on Radiation Protection and Measurements, Washington DC 20014

    Google Scholar 

  • Necas E (1982) Stem cell (CFU-s) proliferation in sublethally irradiated mice. Cell Tissue Kinet 15: 667–672

    Google Scholar 

  • Neumann HA, Löhr GW, Fauser AA (1981) Radiation sensitivity of pluripotent hemopoietic progenitors (CFUGEMM) derived from human bone marrow. Exp Hematol 9: 742–744

    PubMed  CAS  Google Scholar 

  • Norris WP, Tyler SA, Sacher GA (1976) An inter-species comparison of responses of mice and dogs to continuous 60Co γ irradiation. In: International Atomic Energy Agency (ed) Biological and environmental effects of low-level radiation, vol I. IAEA, Vienna, pp 147–156

    Google Scholar 

  • Nothdurft W, Fliedner TM (1979) Stem cell migration after irradiation. In: Okada S, Imamura M, Terasima M, Yamaguchi H (eds) Radiation research. Toppan, Tokyo, pp 657–663

    Google Scholar 

  • Ohkita T (1975) Acute effects. J Radiat Res [Suppl] 16:49–66

    Google Scholar 

  • Paterson E, Gilbert CW, Haigh MV (1956) Effects of paired doses of whole-body irradiation in the rhesus monkey. Br J Radiol 29: 218–226

    Article  PubMed  CAS  Google Scholar 

  • Patt HM (1969) Species differences in leukocyte restoration after irradiation. In: Bond VP, Sugahara T (eds) Comparative cellular and species radiosensitivity. Igaku Shoin, Tokyo, pp 112–122

    Google Scholar 

  • Patt HM, Maloney MA (1975) Bone marrow regeneration after local injury: a review. Exp Hematol 3:135–148

    PubMed  CAS  Google Scholar 

  • Patt HM, Quastler H (1963) Radiation effects on cell renewal and related systems. Physiol Rev 43:357–396

    PubMed  CAS  Google Scholar 

  • Prasad KN (1974) Human radiation biology. Harper and Row, Hagerstown New York Evanston San Francisco London

    Google Scholar 

  • Proukakis C, Lindop PJ (1967) Age dependence of radiation sensitivity of haemopoietic cells in the mouse. Nature 215:655–656

    Article  Google Scholar 

  • Proukakis C, Coggle JE, Lindop PJ (1969) Effect of age at exposure on the marrow stem-cell population in relation to 30-day mortality in mice. In: Sikov MR, Mahlum DD (eds) Radiation biology of the fetal and juvenile mammal. US Atomic Energy Commission, Oak Ridge, pp 603–612

    Google Scholar 

  • Queisser W (1978) Das thrombozytäre Zellsystem. In: Queisser W (Hrsg) Das Knochenmark — Morphologie Funktion Diagnostik. Thieme, Stuttgart, S 209–226

    Google Scholar 

  • Quesenberry P, Levitt L (1979 a) Hematopoietic stem cells (First of three parts). N Engl J Med 301:755–760

    Google Scholar 

  • Quesenberry P, Levitt L (1979 b) Hematopoietic stem cells (Second of three parts). N Engl J Med 301:819–823

    Google Scholar 

  • Reactor Safety Study Wash-1400 (1975) Appendix F. US Nuclear Regulatory Commission Robinson WA, Mangalik A (1975) The kinetics and regulation of granulopoiesis. Semin Hematol 12:7–25

    Google Scholar 

  • Rubin P, Landman S, Mayer E, Keller B, Ciccio S (1973) Bone marrow regeneration and extension after extended field irradiation in Hodgkin’s disease. Cancer 32:699–711

    Google Scholar 

  • Schneider DO, Whitmore GF (1963) Comparative effects of neutrons and X-rays on mammalian cells. Radiat Res 18:286–306

    Article  PubMed  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Schofield R, Dexter TM (1982) CFU-S repopulation after low-dose whole-body radiation. Radiat Res 189:607–617

    Article  Google Scholar 

  • Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    Article  CAS  Google Scholar 

  • Slanina J, Musshoff K, Rahner T, Stiasny R (1977) Long-term side effects in irradiated patients with Hodgkin’s disease. Int J Rad Oncol Biol Phys 2:1–19

    CAS  Google Scholar 

  • Spitzer G, Verma DS, Fisher R, Zander A, Vellekoop L, Litam J, McCredie KB, Dicke KA (1980) The myeloid progenitor cell — its value in predicting hematopoietic recovery after autologous bone marrow transplantation. Blood 55:317–323

    PubMed  CAS  Google Scholar 

  • Storb R, Graham TC, Epstein RB, Sale GE, Thomas ED (1977) Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood 50:537–542

    PubMed  CAS  Google Scholar 

  • Sullivan MF, Marks S, Hackett PL, Thompson RC (1959) X-irradiation of the exteriorized or in situ intestine of the rat. Radiat Res 11:653–666

    Article  PubMed  CAS  Google Scholar 

  • Swift MN, Taketa ST, Bond VP (1956) Efficacy of hematopoietic protective procedures in rats X-irradiated with intestine shielded. Radiat Res 4:186–192

    Article  PubMed  CAS  Google Scholar 

  • Sykes MP, Chu F, Savel H, Bonadonna G, Mathis H (1964) The effects of varying dosages of irradiation upon sternal-marrow regeneration. Radiology 83:1084–1088

    PubMed  CAS  Google Scholar 

  • Sykes MP, Chu F, Gee TS, McKenzie S (1974) Follow up long-term effects of therapeutic irradiation on bone marrow. Radiology 113:179–180

    PubMed  CAS  Google Scholar 

  • Testa NG, Hendry JH, Lajtha LG (1973) The response of mouse haemopoietic colony formers to acute or continuous gamma irradiation. Biomedicine 19:183–186

    Google Scholar 

  • Till JE (1963) Quantitative aspects of radiation lethality at the cellular level. Am J Roentgenol, Rad Therapy and Nuclear Med 90:917–927

    CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1963) Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 18:96–105

    Article  PubMed  CAS  Google Scholar 

  • Tolle DV, Seed TM, Fritz TE, Norris WP (1979) Irradiation-induced canine leukemia: A proposed new model: Incidence and Hematopathology. In: Baum SJ, Ledney GD (eds) Experimental hematology today 1979. Springer, Berlin Heidelberg New York, pp 247–256

    Google Scholar 

  • Trentin JJ (1976) Hemopoietic inductive microenvironments. In: Cairnie AB, Lala PK, Osmond DG (eds) Stem cells of renewing cell populations. Academic Press, New York San Francisco London, pp 255–264

    Google Scholar 

  • Trott K-R (1972) Strahlenwirkungen auf die Vermehrung von Säugetierzellen. In: Hug O, Zuppinger A (Hrsg) Strahlenbiologie 3. Handbuch der medizinischen Radiologie, Bd I1/3. Springer, Berlin Heidelberg New York, S 43–125

    Google Scholar 

  • Vogel HH, Clark JW, Jordan DL (1957 a) Comparative mortality following single whole-body exposures of mice to fission neutrons and 60Co gamma rays. Radiology 68:386–398

    Google Scholar 

  • Vogel HH, Clark JW, Jordan DL (1957 b) Comparative mortality after 24-hour, whole-body, exposures of mice to fission neutrons and Cobalt-60 gamma rays. Radiat Res 6:460–468

    Google Scholar 

  • Vos O (1972) Stem cell renewal in spleen and bone marrow of mice after repeated total-body irradiations. Int J Radiat Biol 22:41–50

    Article  Google Scholar 

  • Vries FAJ, Vos O (1966) Preventation of the bone-marrow syndrome in irradiated mice. A comparison of the results after bone-marrow shielding and bone-marrow inoculation. Int J Radiat Biol 11:235–243

    Article  Google Scholar 

  • Vriesendorp HM, Bekkum DW van (1980) Role of total body irradiation in conditioning for bone marrow transplantation. In: Thierfelder S, Rodt H, Kolb JH (eds) Immunobiology and bone marrow transplantation. Springer, Berlin Heidelberg New York, pp 349–364

    Google Scholar 

  • Werts ED, Johnson MJ, DeGowin RL (1977) Postirradiation hemopoietic repopulation and stromal cell viability. Radiat Res 71:214–224

    CAS  Google Scholar 

  • Wu AM, Till JE, Siminovitch L, McCulloch EA (1967) A cytological study of the capacity for differentiation of normal haemopoietic colony forming cells. J Cell Physiol 69:177–184

    Article  PubMed  CAS  Google Scholar 

  • Wu Chu-Tse, Lajtha LG (1975) Haemopoietic stem cell kinetics during continuous irradiation. Int J Radiat Biol 27:41–50

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Nothdurft, W. (1985). Knochenmark. In: Heuck, F., Scherer, E. (eds) Strahlengefahrdung und Strahlenschutz / Radiation Exposure and Radiation Protection. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82229-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82229-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82230-8

  • Online ISBN: 978-3-642-82229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics