Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((1528,volume 19 / 4))

  • 22 Accesses

Zusammenfassung

Während der frühen embryonalen Entwicklung wird das Nervensystem von einer longitudinalen Einstülpung des Ektoderms, der Neuralfalte, gebildet, die sich später zu einer Neurairöhre schließt. Die ependymale Auskleidung des Zentralkanals stellt eine Proliferationszone dar, aus der Neurone mit Gliazellen als Stützgewebe (Neuroglia) entstehen. Die weiße Substanz enthält myelinisierte Neuronen, die die Verbindung von Gehirn und Rückenmark darstellen. Die graue Substanz enthält unmyelinisierte Neuronen, Zellkörper und Synapsen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adrian EK, Williams MG (1973) Cell proliferation in injured spinal cord. An electron microscopic study. J Comp Neurol 151:1–24

    Article  PubMed  Google Scholar 

  • Andres KH (1963) Elektronenmikroskopische Untersuchungen über Strukturänderungen im Zyto-plasma von Spinalganglienzellen der Ratte nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60:633–658

    Article  PubMed  CAS  Google Scholar 

  • Atkins HL, Tretter P (1966) Time-dose considerations in radiation myelopathy. Acta Radiol 5:79–93

    Article  CAS  Google Scholar 

  • Bergström R (1962) Changes in peripheral nerve tis-sue after irradiation with high energy protons. Acta Radiol 58:301–312

    Article  PubMed  Google Scholar 

  • Berthold C-H (1974) A comparative morphological study of the developing node-paranode region in lumbar spinal roots. II. Light microscopy after Osmium-tetroxyde alpha-naphtylamine (OTAN) staining. Neurobiology 4:117–131

    PubMed  CAS  Google Scholar 

  • Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1:413–426

    Article  PubMed  CAS  Google Scholar 

  • Boden G (1950) Radiation myelitis of the brain-stem.

    Google Scholar 

  • J Faculty Radiol 2:79–94

    Google Scholar 

  • Bradley WG, Fewings JD, Cumming WJK, Harrison RM (1977) Delayed myeloradiculopathy produced by spinal x-irradiation in the rat. J Neurol Sci 31:63–82

    Article  PubMed  CAS  Google Scholar 

  • Caveness WF (1980) Experimental observations: Delayed necrosis in normal monkey brain. In: Radiation damage to the nervous system. Gilbert HA, Kagan AR (eds). Raven, New York, pp 1–38

    Google Scholar 

  • Ceccarini C, Eagle H (1971) pH as a determinant of cellular growth and contact inhibition. Proceedings of the National Academy of Sciences 68/1:229–233

    Google Scholar 

  • Chigasaki H (1963) Studies on the DNA synthesis function of glial cells by means of 3H-thymidine microradioautography. Brain Nerv (Tokyo) 15:767–781

    CAS  Google Scholar 

  • Cook RD, Wisniewski HM (1973) The role of Oligodendroglia and astroglia in Wallerian degeneration of the optic nerve. Brain Res 61:191–206

    Article  PubMed  CAS  Google Scholar 

  • Crafts D, Wilson CB (1977) Animal models of brain tumors. Natl Cancer Inst Monogr 46:11–17

    PubMed  CAS  Google Scholar 

  • Ellis F (1968) The relationship of biological effect to dose-time-fractionation factors in radiotherapy. Curr Top Radiat Res Quart 4:357–397

    Google Scholar 

  • Fowler JF, Denekamp J, Thames HD, Travis EL (1984) Repair factors for multifraction irradiations. Radiotherapy and Oncology 1:281–286

    Article  PubMed  CAS  Google Scholar 

  • Fukuma S, Taketomo S, Ueda S, Ohmachi J, Toyama M, Kiramura T, Yoshida S, Maekawa J, Nakamura K, Fujita F (1969) Autoradiographic studies on human brain tumors using local labeling with 3H-thymidine in vivo. Brain Nerve (Tokyo) 21:1029–1035

    CAS  Google Scholar 

  • Gerweck Leo E, Burlett P (1978) The lack of correlation between heat and radiation sensitivity in mammalian cells. Int J Radiat Oncol Biol Phys 4:283–285

    Google Scholar 

  • Griffith JO, Pendergrass EP (1934) A study of the effect of irradiation upon the lumbar sympathetic ganglia in rats. Radiology 23:463–465

    Google Scholar 

  • Haveman J (1979) The pH of the cytoplasm as an important factor in the survival of in vitro cultured malignant cells after hyperthermia. Effects of carbonylcyanide-3-chlorophenylhydrazone. Eur J Cancer 15:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Haymaker W, Rubinstein LJ, Miguel J (1972) Brain tumors in irradiated monkeys. Acta Neuropathol 20:267

    Article  PubMed  CAS  Google Scholar 

  • Hekmatpanah J (1975) Gliomas. Current concepts in biology, diagnosis and therapy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Herndon RM, Price DL, Weiner LP (1977) Regeneration of Oligodendroglia during recovery from demyelinating disease. Science 195:693–694

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T (1977) Therapeutic implications of brain tumor cell kinetics. Nat Cancer Inst Monogr 46:29–35

    PubMed  CAS  Google Scholar 

  • Hoshino T, Barker M, Wilson CB, Bolderey ED, Fewes D (1972) Cell kinetics of human gliomas,. J Neurosurg 37:15–26

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Wheeler KT, Gray JW, Nomura K (1975 a) Flow microfluorometric analysis of nuclei isolated from brain and brain tumors. Presented at the Conference on Cell Kinetics and Cancer Chemotherapy, Annapolis, Md, Nov 4–6 Cancer Treatment Rep 60:1984

    Google Scholar 

  • Hoshino T, Wilson CB, Rosenblum ML, Barker M (1975 b) Chemo therapeutic implication of growth fraction and cell cycle time in glioblastoma. J Neurosurg 43:127–135

    Article  PubMed  CAS  Google Scholar 

  • Janzen AH, Warren S (1942) Effect of roentgen rays on the peripheral nerve of the rat. Radiology 38:333–337

    Google Scholar 

  • Johnson HA, Haymaker WE, Rubini JR, Fliedner TM, Bond VP, Cronkite ED Hughes WL (1960) A radioautographic study of a human brain and glioblastoma multiforme after the in vivo uptake of tritiated thymidine. Cancer 13:636–642

    Article  PubMed  CAS  Google Scholar 

  • Kellerer AM, Brenot J (1974) On the statistical evaluation of dose-response functions. Radiat Environ Biophys11:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kerns JM, Hinsman EJ (1973) Neuroglial response to sciatic neurectomy. I. Light microscopy and autoradiography. II. Electron microscopy. J Comp Neurol 151:237–280

    Article  PubMed  CAS  Google Scholar 

  • Kinsella TJ, Weichselbaum RR, Sheline GE (1980) Radiation injury of cranial and peripheral Nerves. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. Raven, New York, pp 148–153

    Google Scholar 

  • Kogel AJ van der (1977) Radiation tolerance of the rat spinal cord: Timerdose relationships. Radiology 122:505–509

    PubMed  Google Scholar 

  • Korr H, Schultze B, Maurer W (1975) Autoradiographic investigations of glial proliferation in brain of adult mice. II. Cycle time and mode of proliferation of neuroglia and endothelial cells. J Comp Neurol 160:477–490

    Article  PubMed  CAS  Google Scholar 

  • Kury G, Carter HD (1965) Autoradiographic study of human nervous system tumors. Arch Pathol Lab Med 80:38–42

    Google Scholar 

  • Kwa Hong Giok (1961) An experimental study of pituitary tumours. Genesis, cytology and hormone content. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Lambert PM (1978) Radiation myelopathy of the thoracic spinal cord in long-term survivors treated with radical radiotherapy using conventional fractionation. Cancer 41:1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Lewis PD (1968) A quantitative study of cell proliferation in the subependymal layer of the adult rat brain. Exp Neurol 20:203–207

    Article  PubMed  CAS  Google Scholar 

  • Lewis PD (1968) The fate of the subependymal cell in the adult rat brain, with a note on the origin of microglia. Brain 91:721–736

    Article  PubMed  CAS  Google Scholar 

  • Linder E (1959) Über das funktionelle und morpho-logische Verhalten peripherer Nerven längere Zeit nach Bestrahlung. Fortschr Roentgenstr 90:618–624

    Article  PubMed  CAS  Google Scholar 

  • Liu HM (1973) Schwann cell properties: 1. Origin of Schwann cell during peripheral nerve regeneration. J Neuropathol Exp Neurol 32:458–473

    Article  Google Scholar 

  • Matsutani M, Hoshino T (1975) Analysis of tumor growth in recurrent malignant gliomas. Brain Nerv (Tokyo) 27:277–281

    Google Scholar 

  • Mendelsohn ML (1962) Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J Natl Cancer Inst 28:1015–1029

    PubMed  CAS  Google Scholar 

  • O’Connor GT (1969) Cancer - A general review. Primates Med 3:9–22

    Google Scholar 

  • Pallis CA, Louis S, Morgan RL (1961) Radiation myelopathy. Brain 84:460–479

    Article  PubMed  CAS  Google Scholar 

  • Pampus F (1963) Die Wasserstoffionenkonzentration des Hirngewebes bei raumfordernden intracraniellen Prozessen. Acta Neurochir (Wien) 11:305–318

    Article  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28:5–12

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Vaughn JE (1970) Morphology and development of the myelin sheath. In: Davison AN, Peters A (eds) Myelination. Thomas, Springfield/ Illinois, pp 3–79

    Google Scholar 

  • Phillips TL, Buschke F (1969) Radiation tolerance of the thoracic spinal cord. Am J Roentgenol 105:659–664

    CAS  Google Scholar 

  • Puck TT, Steffen J (1963) Life cycle analysis on mammalian cells. I. A method of localizing metabolic events within the life cycle, and its application to the action of colcemide and sublethal doses of X-irradiation. Biophys J 3:379–397

    Article  PubMed  CAS  Google Scholar 

  • Puck TT, Markus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (1976) Opening of the blood-brain barrier by acute hypertension. Exp Neurol 52:467–479

    Article  PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localisation of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Berg-Blok Avd (1980) Features and limitations of the in vivo evaluation of tumour response by optical means. Br J Cancer [Suppl IV] 41:64–68

    Google Scholar 

  • Reinhold HS, Kaalen JGAH, Unger-Gils K (1976) Radiation myelopathy of the thoracic spinal cord. Int J Radiat Oncol Biol Phys 1:651–657

    Article  PubMed  CAS  Google Scholar 

  • Rice L, Urano M, Suit HD (1980) The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays. Br J Cancer [Suppl IV] 41:240–244

    Google Scholar 

  • Rizzuto N, Gambetti PL (1976) Status spongiosus of rat central nervous system induced by actinomycin D. Acta Neuropathol 36:21–30

    Article  PubMed  CAS  Google Scholar 

  • Röttinger EM, Gerweck LE (1979) Zerstörung strahlenresistenter Zellpopulationen durch Hyperthermie. In: Wannenmacher M, Gau wer ky F, Streffer C (Hrsg) Kombinierte Strahlen- und Chemothe-rapie. Urban & Schwarzenberg, München Wien Baltimore, S 70–74

    Google Scholar 

  • Röttinger EM, Mendonca M (1980) Radioresistance secondary to low pH in human glial cells and Chinese hamster ovary cells. Proceedings 2nd Rome Intern Symp Biological Basis and Clinical Implications of Tumor Radioresistance, Rome, Sept 1980

    Google Scholar 

  • Röttinger EM, Mendonca M, Gerweck LE (1980) Modification of pH induced cellular inactivation by irradiation - glial cells. Inst J Radiat Oncol Biol Phys 6:1659–1662

    Article  Google Scholar 

  • Röttinger EM, Mendonca M (1981) The range of maximal tolerance of human glial cells to pH and hyperthermia. Natl Cancer Inst Monogr 60:131–132

    Google Scholar 

  • Skoff RP (1975) The fine structure of pulse labeled (3H-thymidine cells) in degenerating rat optic nerve. J Comp Neurol 161:595–612

    Article  PubMed  CAS  Google Scholar 

  • Smith ME (1968) The turnover of myelin in the adult rat. Biochem Biophys Acta 164:285–293

    PubMed  CAS  Google Scholar 

  • Spencer PS, Thomas PK (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons. J Neurocytol 3:763–783

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (1968) Cell loss from experimental tumors.

    Google Scholar 

  • Cell Tissue Kinet 1:193–207

    Google Scholar 

  • Stenwig AE (1972) The origin of brain macrophages in traumatic lesions, Wallerian degeneration and retrograde degeneration. J Neuropathol Exp Neurol 31:696–704

    Article  PubMed  CAS  Google Scholar 

  • Strandqvist M (1944) Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut- und Lippenkarzinomen. Acta Radiol [Suppl] (Stockh) 55:1–300

    Google Scholar 

  • Suit HD (1980) Vortrag 2nd Rome Intern Symp Biological Basis and Clinical Implications of Tumor Radioresistance, Rome, Sept 1980 Abstract A 7

    Google Scholar 

  • Tannock IF (1967) A comparison of the relative efficiencies of various metaphase arrest agents. Exp Cell Res 47:345–356

    Article  CAS  Google Scholar 

  • Tym R (1969) Distribution of cell doubling times in in vivo human cerebral tumors. Surg Forum 20:445–447

    PubMed  CAS  Google Scholar 

  • Vaughn JE, Skoff RP (1972) Neuroglia in experimentally altered central nervous tissue. In: Bourne GH (ed) Structure and function of nervous tissue, vol VI. Academic Press, New York, pp 39–72

    Google Scholar 

  • Wara WM, Phillips TL, Sheline GE, Schwade JG (1975) Radiation tolerance of the spinal cord. Cancer 35:1558–1562

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1983) A new isoeffect for change in dose per fraction. Radiotherapy and Oncology 1:187–191

    Article  PubMed  CAS  Google Scholar 

  • Wolff JR, Bär Th (1976) Development and adult variation of the pericapillary glial sheath in the cortex of rat. In: Cervos-Navarro J (ed) The cerebral vessel wall. Raven, New York, pp 7–13

    Google Scholar 

  • Zwieten MJ van, Zurcher C, Hollander CF (1978) Longevity studies in rhesus monkeys after X-ray and neutron irradiation with special emphasis on tumor induction. In: Late biological effects of ionizing radiation, vol 2. Proceedings of a Symposium, Vienna, March 13–17. International Atomic Energy Agency, Vienna

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Röttinger, E.M. (1985). Strahlenbiologie des zentralen und peripheren Nervensystems. In: Heilmann, HP. (eds) Spezielle Strahlentherapie Maligner Tumoren Teil 4 / Radiation Therapy of Malignant Tumours Part 4. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 19 / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82227-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82227-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82228-5

  • Online ISBN: 978-3-642-82227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics