Low-Frequency Elastic Loss in Dielectric and Metallic Glasses at Low Temperature

  • H. Tietje
  • M. v. Schickfus
  • E. Gmelin
  • H.-J. Güntherodt
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 51)


Since a few years it is a well established fact that the low-temperature properties of amorphous dielectrics and metals are largely determined by low-energy tunneling systems [1]. To agree with the observed anomalies in the thermal and acoustic properties, a particular distribution of the parameters of the tunneling centers has been assumed. The tunneling systems are characterized by the asymmetry Δ of the potential wells and by the tunnel splitting Δ0 due to the overlap of the wavefunctions in the two wells. Their coupling to phonons or conduction electrons leads to a relaxation time τ = τ (E, Δ0). The distribution of the parameters Δ and Δ0 can be transformed into a distribution of the relaxation times \( p(E, {\tau ^{ - 1}}) = 1/2\bar p{\tau ^{ - 1}}{(1 - \tau /{\tau _{\min }})^{ - 1/2}}[2] \) , where E=(Δ22)1/2 is the energy of the tunneling center and τmin the shortest relaxation0 time for a given energy reached at Δ0=E. This distribution diverges for τ→τmin and τ→∞, so that for a finite density of states \( n(E) = \int {\bar p} (E, {\tau ^{ - 1}})d{\tau ^{ - 1}} \) some kind of a cutoff has to be introduced for large values of τ or, equivalently, for small values of Δ0. Until now, however, this cutoff value of τwas not known. The time dependence of the specific heat [3] has shown only qualitatively that large values of τ must exist. Based on measurements of the specific heat it has been argued that Δ0, min ≈15 mK [4].


Germanium Acoustics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For recent review articles see: “Amorphous Solids: Low-Temperature Properties”; W.A. Phillips, ed.; Springer Verlag, Heidelberg 1981.Google Scholar
  2. 2.
    J. Jäckle; Z. Physik 257, 121 (1972)Google Scholar
  3. 3.
    M.T. Loponen, R.C. Dynes, V. Narayanamurti, J.P. Garno; Phys. Rev. B25, 1161 (1982)ADSGoogle Scholar
  4. M. Meissner, K. Spitzmann; Phys.Rev.Lett. 46, 265 (1981)CrossRefADSGoogle Scholar
  5. J. Zimmermann, G. Weber; Phys.Lett. 86A, 32 (1981)ADSGoogle Scholar
  6. 4.
    J.E. Lewis, J.C. Lasjaunias; J. de PFÿsique C6 39, C6–965 (1978)Google Scholar
  7. 5.
    H. Tietje, M.v. Schickfus, E. Gmelin; J.de Physique C9, 43, C9–529 (1982)Google Scholar
  8. 6.
    A.K. Raychaudhuri, S. Hunklinger; J. de Physique C9, 47 C9–485 (1982)Google Scholar
  9. 7.
    S. Hunklinger, W. Arnold; in “Physical Acoustics”, R.N. Thurston, W.P. Mason eds., Vol.12, p.155 (Academic Press, New York 1976)Google Scholar
  10. 8.
    G. Bellessa, O. Bethoux; Phys.Lett.62A, 125 (1977); the value given in this paper has to be increased by a1ctor of two, see G. Weiss, S. Hunklinger, H. v. Löhneysen; Physica 109 & 1108, 1946 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Tietje
    • 1
  • M. v. Schickfus
    • 2
  • E. Gmelin
    • 1
  • H.-J. Güntherodt
    • 3
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany
  2. 2.Institut für Angewandte Physik IIUniversität HeidelbergHeidelbergFed. Rep. of Germany
  3. 3.Institut für PhysikUniversität BaselBaselSchweiz

Personalised recommendations