Skip to main content

Computer Glass Transition

  • Conference paper
Topological Disorder in Condensed Matter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 46))

Abstract

By means of the molecular dynamics technique, we have prepared computer glasses and studied the structural, thermodynamic, transport and dynamical properties of the obtained glasses in comparison with those for corresponding liquids and crystals. The computer glasses have been produced by quenching under constant pressures a model liquid consisting of 864 atoms with the periodic boundary condition and with the interatomic interactions described by the Lennard-Jones (12–6) pair potentials. As for the macroscopically observable structural properties, we have measured the pair distribution function g(r) and calculated the structure factor S(q) by Fourier transforming g(r). The thermodynamic properties we have derived include specific volume as a function of temperature, thermal expansion coefficient, specific heat at constant volume, specific heat at constant pressure and isothermal compressibility. Concerning the transport properties, we have first evaluated the diffusion constant from the velocity autocorrelation function as well as from the mean square displacement, and secondly the shear viscosity from the stress autocorrelation function. The velocity autocorrelation function is also used to evaluate the power spectra which provide an indication for the behaviour of phonons in glasses. The glass transition temperatures by several definitions are estimated in connection with various physical properties mentioned above. The microscopic information for the atomic structures is analyzed in detail to elucidate the mechanism of the glass transition. In this context, we have derived the pair distribution function ḡ(r) of the time-averaged positions and a discussion is given of the cage-structure concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Cohen and G.S. Grest, Phys. Rev. 20, 1077 (1979)

    Article  ADS  Google Scholar 

  2. W. Kauzmann, Chem. Rev. 43, 219, (1948) R.O. Davies and G.O. Jones, Adv. Phys. 2, 370 (1953)

    Article  Google Scholar 

  3. C.A. Angell, J.H.R. Clarke, and L.V. Woodcock, in Advances in Chemical Physics, edited by I. Prigogine and S.A. Rice ( Wiley, New York, 1981 )

    Google Scholar 

  4. F.F. Abraham, J. Chem. Phys. 72, 359 (1980)

    Article  ADS  Google Scholar 

  5. H.R. Wendt and F.F. Abraham, Phys. Rev. Lett. 41, 1244 (1978)

    Article  ADS  Google Scholar 

  6. L.V. Woodcock, J. Chem. Soc., Faraday II, 72, 1667 (1976)

    Article  Google Scholar 

  7. J.M. Gordon, J.H. Gibbs, and P.D. Fleming, J. Chem. Phys. 65, 2771 (1976)

    Article  ADS  Google Scholar 

  8. J.N. Cape and L.V. Woodcock, J. Chem. Phys. 72, 976 (1980)

    Article  ADS  Google Scholar 

  9. J.N. Cape, J.L. Finney, and L.V. Woodcock, J. Chem. Phys. 75, 2336 (1981)

    Article  ADS  Google Scholar 

  10. Y. Hiwatari, J. Phys. Soc. Japan, 47, 733 (1979); J. Phys. C. 13, 5899 (1980)

    Article  Google Scholar 

  11. A. Rahman, M.J. Mandell, and J.P. McTague, J. Chem. Phys. 64, 1564 (1976)

    Article  ADS  Google Scholar 

  12. W.D. Kristensen, J. Non-Cryst. Solids, 21, 303 (1976)

    Article  ADS  Google Scholar 

  13. J.H.R. Clarke, J. Chem. Soc. Faraday II, 75, 1371 (1979)

    Article  Google Scholar 

  14. L.V. Woodcock, C.A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)

    Article  ADS  Google Scholar 

  15. R. Zallen, in Fluctuation Phenomena, edited by E.W. Montroll and J.L. Lebowitz ( North Holland, Amsterdam, 1979 )

    Google Scholar 

  16. R. Collins, in Phase Transitions and Critical Phenomana, edited by C. Domb and M.S. Green ( Akademic, New York, 1972 )

    Google Scholar 

  17. A. Rahman, Phys. Rev. 136, A405 (1964)

    Article  ADS  Google Scholar 

  18. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  19. H.C. Anderson, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  20. M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    Article  ADS  Google Scholar 

  21. Y. Waseda, The Structure of Non-Crystalline Materials, Liquids and Amorphous Solids, ( Mcgraw-Hill, New York, 1980 )

    Google Scholar 

  22. G.S. Cargill III, J. Appl. Phys. 41, 12 (1970)

    Article  ADS  Google Scholar 

  23. G.S. Cargill III and S. Kirkpatrick, in AIP Conference Proceedings No. 31 Structures and Exitations of Amorphous Solids, edited by G.Lucovski and F.L. Galeener, (American Institute of Physics, New York, 1976 )

    Google Scholar 

  24. C.H. Bennett, J. Appl. Phys. 43, 2727 (1972)

    Article  ADS  Google Scholar 

  25. S. Basak, R. Clarke and S.R. Nagel, Phys. Rev. B20, 3388 (1979)

    Article  ADS  Google Scholar 

  26. J.D. Weeks, D. Chandler, and H.C. Anderson, J. Chem. Phys. 54, 5237 (1971)

    Article  ADS  Google Scholar 

  27. S. Hudson and H.C. Anderson, J. Chem. Phys. 69, 2323 (1978)

    Article  ADS  Google Scholar 

  28. J.L. Levowitz, J.K. Percus and L. Verlet, Phys. Rev. 153, 250 (1967)

    Article  ADS  Google Scholar 

  29. J.H.R. Clarke, J. Chem. Soc. Faraday II, 76, 273 (1980)

    Google Scholar 

  30. R. Kubo, Reports on Progress in Physics, 29, 255 (1966)

    Article  ADS  Google Scholar 

  31. A.J. Batschinski, Z. Physik. Chem. 84, 643 (1913)

    Google Scholar 

  32. J.H. Hildebrand, Viscosity and Diffusivity, ( Wiley, New York, 1976 )

    Google Scholar 

  33. A.K. Doolittle, J. Appl. Phys. 22, 1471 (1951)

    Article  ADS  Google Scholar 

  34. M. Williams, R.F. Landel, and J.D. Ferry, J. Amer. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  35. B.J. Alder, D.M. Gass, and T.E. Wainwright, J. Chem. Phys. 53, 3813 (1970)

    Article  ADS  Google Scholar 

  36. D. Levesque, L. Verlet, and J. Kurkijarvi, Phys. Rev. 7, 1690 (1973)

    Article  ADS  Google Scholar 

  37. R. Zwanzig and N.K. Ailawadi, Phys. Rev. 182, 280 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  38. J.M. Dickey and A. Paskin, Phys. Rev. 188, 1407 (1969)

    Article  ADS  Google Scholar 

  39. G.S. Grest, S.R. Nagel, A. Rahman, and T.A. Witten, Jr, J. Chem. Phys. 74, 3532 (1981)

    Article  ADS  Google Scholar 

  40. J.D. Bernal, Proc. Roy. Soc. A280, 299 (1964)

    Article  ADS  Google Scholar 

  41. J.L. Finney, Proc. Roy. Soc. A319, 479 (1970)

    Google Scholar 

  42. C.A. Rogers, Packing and Covering, ( Cambridge, Univ. Press, 1964 )

    MATH  Google Scholar 

  43. M. Tanemura, Y. Hiwatari, T. Ogawa, H. Matsuda, A. Ueda, and N. Ogita, Prog. Theor. Phys. 58, 1079 (1977)

    Article  ADS  Google Scholar 

  44. C.S. Hsu and A. Rahman, J. Chem. Phys. 70, 5254 (1979); ibid 11, 4974 (1980)

    Google Scholar 

  45. J. Frenkel, Kinetic Theory of Liquids, ( Clarendon Press, Oxford, 1946 )

    MATH  Google Scholar 

  46. H. Eyring, J. Chem. Phys. 4, 283 (1936)

    Article  ADS  Google Scholar 

  47. T.G. Fox and P.J. Flory, J. Appl. Phys. 21, 581 (1950); J. Phys. Chem. 55, 221 (1951); J. Polym. Sci. 14, 315 (1954)

    Article  ADS  Google Scholar 

  48. M.H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959)

    Article  ADS  Google Scholar 

  49. D. Turnbull and M.H. Cohen, J. Chem. Phys. 34, 120 (1961); ibid 52, 3038 (1970)

    Google Scholar 

  50. About the analysis in this paragraph, we greatly benefit from the discussions with M.H. Cohen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kimura, M., Yonezawa, F. (1983). Computer Glass Transition. In: Yonezawa, F., Ninomiya, T. (eds) Topological Disorder in Condensed Matter. Springer Series in Solid-State Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82104-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82104-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82106-6

  • Online ISBN: 978-3-642-82104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics