Gauge Theory of Glass

  • N. Rivier
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 46)


The homogeneity of amorphous materials is a gauge symmetry, and the only structural constituents of topological disorder in elastic continua are odd lines or 2π disclinations. A model free energy for glass is constructed from this geometrical framework. It is a minimally coupled, YANG-MILLS free energy with SO(3) gauge invariance. The same free energy can also be derived from elasticity theory of disordered continuous media. There are only two distinct ground state configurations per odd line, between which the system can tunnel. This constitutes a microscopic model of the tunneling modes responsible for the anomalous low temperature properties of glasses. These results are shown to be general properties of a gauge theory of condensed matter.


Gauge Theory Gauge Transformation Gauge Invariance Spin Glass Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. Wright, G. Etherington, J.A.E. Desa, R.N. Sinclair, G.A.N. Connell and J.C. Mikkelsen Jr., J. Non-Crystalline Solids 49 (1982) 63CrossRefADSGoogle Scholar
  2. 2.
    T. Ogawa, this volumeGoogle Scholar
  3. 3.
    N. Rivier, Phil. Mag. A40 (1979) 859Google Scholar
  4. 4.
    N. Rivier and D.M. Duffy, J. Physique 43 (1982) 293Google Scholar
  5. 5.
    B.R. Pollard, An Introduction to Algebraic Topology, Cambridge Univ. Press, to be publishedGoogle Scholar
  6. 6.
    C.L. Stong, Sei. Amer. 233 (1975) 120Google Scholar
  7. 7.
    N. Rivier, “Topological Structure of Glasses”, TMS-AIME Fall meeting (1982), V. Vitek, ed., to appearGoogle Scholar
  8. 8.
    J. Friedel, DislocationsGoogle Scholar
  9. 9.
    E. Kroner, in Physics of Defects, R. Balian, M. Kleman and J.P. Poirier, eds., North Holland 1981, ch.3Google Scholar
  10. 10.
    D. M. Duffy and N. Rivier, J. Physique Coll. (1982), to appearGoogle Scholar
  11. 11.
    N. Rivier and D. M. Duffy, J. Phys. C15 (1982) 2867ADSGoogle Scholar
  12. 12.
    J.L. Meijering, Philips Res. Rep. 8 (1953) 270zbMATHGoogle Scholar
  13. 13.
    J.L. Tallon, Phys. Lett. 76A (1980) 139CrossRefGoogle Scholar
  14. 14.
    S.M. Stishov, I.N. Makarenkov, V.A. Ivanov and A.M. Nikolaenko, Phys. Lett. 45A (1973) 18CrossRefGoogle Scholar
  15. 15.
    M. Lasocka, Phys. Lett. 51A (1975) 137CrossRefGoogle Scholar
  16. 16.
    R.H. Stolen, J.T. Krause and C.R. Kurkjian, Disc. Faraday Soc. 50 (1970) 103CrossRefGoogle Scholar
  17. 17.
    F. Galeener, in Structure of Non-Crystalline Materials, P.H. Gaskell, E.A. Davis and J.M. Parker, Taylor and Francis, to be publishedGoogle Scholar
  18. 18.
    B. Schutz, Geometrical Methods of Mathematical Physics,Cambridge Univ. Press, 1980zbMATHGoogle Scholar
  19. 19.
    B. Julia and G. Toulouse, J. Physique Lettres 40 (1979) 395CrossRefGoogle Scholar
  20. 20.
    J.A. Schouten, Ricci Calculus, Springer 1954Google Scholar
  21. 21.
    C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    D.M. Duffy, Ph.D. thesis, Univ. of London 1981Google Scholar
  23. 23.
    N. Rivier and D.M. Duffy, in Critical Phenomena, J. Della Dora, J. Demongeot and B. Lacolle, Synergetics, vol. 9,Springer 1981, p.132Google Scholar
  24. 24.
    K. Kitahara, this volumeGoogle Scholar
  25. 25.
    F. Bloch, Phys. Rev. B2, (1970) 109Google Scholar
  26. 26.
    M. Tinkham, Introduction to SuperconductivMcGraw Hill 1975Google Scholar
  27. 27.
    R.B. Laughlin, Phys. Rev. B23 (1981) 5632CrossRefADSGoogle Scholar
  28. 28.
    K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45,(1980) 494CrossRefADSGoogle Scholar
  29. 29.
    G. ’tHooft, Phys. Rev. Lett. 37 (1976) 8Google Scholar
  30. 30.
    A.I. Larkin and P.A. Lee, Phys. Rev. B17 (1978) 1596CrossRefADSGoogle Scholar
  31. 31.
    Amorphous Solids, W.A. Phillips, ed., Springer 1981Google Scholar
  32. 32.
    R.M. Boysel and A.D. Caplin, Phys. Rev. B27 (1983) Jan. 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • N. Rivier
    • 1
  1. 1.Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations