Free Convection in a Multicomponent Fluid

  • Jean Karl Platten
  • Jean Claude Legros

Abstract

The preceeding chapters were concerned with one component fluids, but multi-component fluids are the more likely to be encountered in nature. Therefore generally concentration gradients and concentration fluctuations are present and must be taken into account. Particularly, one should like to know how much concentration fluctuations affect the stability of a multicomponent system heated from below. Our interest in the two-component Bénard problem was stimulated by the suggestion that the critical Rayleigh number could be used in order to determine the value of the Soret coefficient (cf. chapter I, § 3). Indeed, the critical Rayleigh number can be written as
$${\rm{R}}{{\rm{a}}^{{\rm{Crit}}}} = {{{\rm{g}}[ - \rho _{\rm{m}}^{ - 1}(\partial \rho /\partial {\rm{T}}]\Delta {{\rm{T}}^{{\rm{Crit}}}}\;{{\rm{h}}^3})} \over {{{\cal Z}^\nu }}} = {{{\rm{g}}\rho _{\rm{m}}^{ - 1}\;\Delta _\rho ^{{\rm{Crit}}}\;{{\rm{h}}^3}} \over {{{\cal Z}^\nu }}}$$
(IX.1)
where \(\Delta _\rho ^{{\rm{Crit}}}\) is the critical difference in density between top and bottom due to the thermal gradient. In a two-component system, this thermal gradient induces a concentration gradient and the local density is a function not only of the temperature, but also of the composition. Let us suppose the critical value of the Rayleigh number known and the second definition (IX.1) still valid even with a density function of temperature and composition. For a given fluid of known ℋ and ν in a particular apparatus of given depth h, one may evaluate \(\Delta _\rho ^{{\rm{Crit}}}\), which is at the onset of convection
$$\Delta {\rho ^{{\rm{Crit}}}} = {({\textstyle{{\partial \rho } \over {\partial {\rm{T}}}}})_{\rm{N}}}\,\Delta {{\rm{T}}^{{\rm{Crit}}}} + {({\textstyle{{\partial \rho } \over {\partial {\rm{N}}}}})_{\rm{T}}}\,\Delta {{\rm{N}}^{{\rm{Crit}}}}$$
(IX.2)
Here, N is a variable describing the local composition of the fluid; it is convenient to take N as the mass fraction of one of the components. \(\rho _{\rm{m}}^{ - 1}{({\textstyle{{\partial \rho } \over {\partial {\rm{T}}}}})_{\rm{N}}}\) as well as \(\rho _{\rm{m}}^{ - 1}{({\textstyle{{\partial \rho} \over {\partial {\rm{N}}}}})_{\rm{T}}}\) are known properties of the fluid and ΔTCrit is measured.

Keywords

Sugar Convection Total Heat Benzene Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. H. STOMMEL, A.B. AROMS and D. BLANCHARD, Deep Sea Res., 3, 152, 1956.CrossRefGoogle Scholar
  2. M.E. STERN, Tellus, 12, 172, 1960.ADSCrossRefGoogle Scholar
  3. H. STOMMEL, Tellus, 13, 224, 1961.ADSCrossRefGoogle Scholar
  4. J.S. TURNER and H. STOMMEL, Proc. Nat. Acad. Sci., 52, 49, 1964.ADSCrossRefGoogle Scholar
  5. G. WALIN, Tellus, 16, 389, 1964.ADSCrossRefGoogle Scholar
  6. G. VERONIS, J. Marine Res., 23, 1, 1965.Google Scholar
  7. L. MILLER and E.A. MASON, Phys. Fluids, 9, 711, 1966.ADSCrossRefGoogle Scholar
  8. L. MILLER, T.H. SPURLING and E.A. MASON, Phys. Fluids, 10, 1809, 1967,ADSCrossRefGoogle Scholar
  9. D.A. NIELD, J. Fluid Mech., 29, 35, 1967CrossRefGoogle Scholar
  10. J.S. TURNER, Deep Sea Res., 14, 599, 1967.Google Scholar
  11. T.G.L. SHIRTCLIFFE, Nature, 213, 489, 1967.ADSCrossRefGoogle Scholar
  12. J.S. TURNER, J. Fluid Mech., 33, 183, 1968.ADSCrossRefGoogle Scholar
  13. G. VERONIS, J. Fluid Mech., 34, 315, 1968.MATHADSCrossRefGoogle Scholar
  14. M.E. STERN and J.S. TURNER, Deep Sea Res., 16, 497, 1969.Google Scholar
  15. M.E. STERN, J. Fluid Mech., 35, 209, 1969.MATHADSCrossRefGoogle Scholar
  16. P.G. BAINES and A.E. GILL, J. Fluid Mech., 37, 289, 1969.ADSCrossRefGoogle Scholar
  17. T.G.L. SHIRTCLIFFE, J. Fluid Mech., 35, 677, 1969. Int. J. Heat Mass Transfer, 12, 212, 1969.ADSCrossRefGoogle Scholar
  18. C.-S. YIH, Phys. Fluids, 13, 2907, 1970.ADSCrossRefGoogle Scholar
  19. T.G.L. SHIRTCLIFFE and J.S. TURNER, J. Fluid Mech., 41, 707, 1970.ADSCrossRefGoogle Scholar
  20. R.B. LAMBERT and J.W. DEMENKOW, J. Fluid. Mech., 54, 627, 1971.ADSCrossRefGoogle Scholar
  21. J.S. TURNER, Buoyancy Effects in Fluids, Cambridge University Press, 1973.Google Scholar
  22. H.E. HUPPERT, Nature, 263, 20, 1976. J. Fluid Mech., 78, 821, 1976. Lecture Notes in Physics, 71, 239, 1977.ADSCrossRefGoogle Scholar
  23. E. KNOBLOCH and N.O. WEISS, Phys. Letters, 85(A), 127, 1981ADSGoogle Scholar
  24. E. KNOBLOCH and M.R.E. PROCTOR, J. Fluid Mech., 108, 291, 1981.MATHADSMathSciNetCrossRefGoogle Scholar
  25. L.N. DA COSTA, E. KNOBLOCH and N.O. WEISS, J. Fluid Mech., 109, 25, 1981.MATHADSMathSciNetCrossRefGoogle Scholar
  26. W.WEINBERGER, Solar Energy, 8, 45, 1964.CrossRefGoogle Scholar
  27. R.I. TAIT and M.R. HOWE, Deep Sea Res., 15, 275, 1968.Google Scholar
  28. J.W. COOPER and H. STOMMEL, J. Geophys. Res., 73, 5849, 1968.ADSCrossRefGoogle Scholar
  29. M.E. STERN, Deep Sea Res., 15, 245, 1968.Google Scholar
  30. D.A. NIELD, Water Resources Research, 4, 553, 1968.ADSCrossRefGoogle Scholar
  31. T.D. FOSTER, J. Geophys. Res., 74, 6967, 1969.ADSCrossRefGoogle Scholar
  32. E.A. SPIEGEL, Annual Review of Astronomy and Astrophysics, 10, 269, 1972,ADSCrossRefGoogle Scholar
  33. M. GREGG, Scientific American, 228, 64, 1973.CrossRefGoogle Scholar
  34. S.R. de GROOT and P. MAZUR, Nonequilibrium Thermodynamics, North-Holl. Pub. Co., 1962.Google Scholar
  35. G.Z. GERSHUNI and E.M. ZHUKHOVITSKII, Prikl. Mat. Mekh., 27, 441, 1963.MATHMathSciNetGoogle Scholar
  36. J.K. PLATTEN, Bull. Ac. Roy. Belg. Cl. Sci., 57, 669, 1971.MATHGoogle Scholar
  37. V.A. SHTEINBERG, Prikl. Mat. Mekh., 35, 375, 1971.Google Scholar
  38. D.T.J. HURLE and E. JAKEMAN, J. Fluid Mech., 47, 667, 1971.ADSCrossRefGoogle Scholar
  39. J.Cl. LEGROS, Ph. D. Thesis, University of Brussels, 1971.Google Scholar
  40. R.S. SCHECHTER, I. PRIGQGINE and J.R. HAMM, Phys. Fluids, 15, 379, 1972.MATHADSCrossRefGoogle Scholar
  41. J.Cl. LEGROS, J.K, PLATTEN and P. POTY, Phys. Fluids, 15, 1383, 1972.MATHADSCrossRefGoogle Scholar
  42. J.K. PLATTEN and G. CHAVEPEYER, Phys. Fluids, 15, 1555, 1972.MATHADSCrossRefGoogle Scholar
  43. M.G. VERLARDE and R.S. SCHECHTER, Phys. Fluids, 15, 1707, 1972.ADSCrossRefGoogle Scholar
  44. J.Cl. LEGROS, Bull. Ac. Roy. Belg. Cl. Sci., 59, 382, 1973.Google Scholar
  45. J.Cl. LEGROS, P. POTY and G. THOMAES, Physica, 64, 481, 1973.ADSCrossRefGoogle Scholar
  46. R.S. SCHECHTER, M.G. VERLARDE and J.K. PLATTEN, Advances in Chemical Physics, 26, 265, 1974.CrossRefGoogle Scholar
  47. G. CHAVEPEYER, Ph. D. Thesis, University of Mons, Belgium, 1974.Google Scholar
  48. M. TAKASHIMA, J. Phys. Soc. Japan, 41, 1394, 1976.ADSCrossRefGoogle Scholar
  49. G. VANDERBORCK and J.K. PLATTEN, Rev. Gén. de Thermique, 190, 693, 1977.Google Scholar
  50. J.K. PLATTEN and J.C1. LEGROS, Phys. Rev. Letters, 45, 1944, 1980.ADSCrossRefGoogle Scholar
  51. E. KNOBLOCH, Phys. Fluids, 23, 1918, 1980.ADSMathSciNetCrossRefGoogle Scholar
  52. D. VILLERS, Mémoire de licence (M. Sc. Thesis), University of Mons, Belgium, 1982.Google Scholar
  53. J.C1. LEGROS, W.A. VAN HOOK and G. THOMAES, Chem. Phys. Letters, 1, 696, 1968. 2, 49, 1968. 2, 251, 1968.ADSCrossRefGoogle Scholar
  54. J.Cl. LEGROS, D. RASSE and G. THOMAES, Chem. Phys. Letters, 4, 632, 1970.ADSCrossRefGoogle Scholar
  55. P.S. BELTON and H.J.V. TYRRELL, Chem. Phys. Letters, 4, 619, 1970.ADSCrossRefGoogle Scholar
  56. D.R. CALDWELL, J. Fluid Mech., 42, 161, 1970.ADSCrossRefGoogle Scholar
  57. D.T.J. HURLE and E. JAKEMAN, J. Fluid Mech., 47, 667, 1971.ADSCrossRefGoogle Scholar
  58. J.Cl. LEGROS, Ph. D. Thesis, University of Brussels, 1971.Google Scholar
  59. J.K. PLATTEN and G. CHAVEPEYER, Phys. Letters, 40A, 287, 1972.ADSGoogle Scholar
  60. D.R. CALDWELL, J. Phys. Chem., 77, 2004, 1973.CrossRefGoogle Scholar
  61. J.K. PLATTEN and G. CHAVEPEYER, J. Fluid Mech., 60, 305, 1973.MATHADSCrossRefGoogle Scholar
  62. D.T.J. HURLE and E. JAKEMAN, Phys. Letters, 43A, 127, 1973.ADSGoogle Scholar
  63. D.R. CALDWELL, J. Fluid Mech., 64, 347, 1974.ADSCrossRefGoogle Scholar
  64. G. CHAVEPEYER, Ph. D. Thesis, University of Mons, Belgium, 1974.Google Scholar
  65. D.R. CALDWELL, J. Phys. Chem., 79, 1882, 1975.CrossRefGoogle Scholar
  66. A. SPARASCI and H.J.V. TYRRELL, J. Chem. Soc, Faraday Trans. I, 71, 42, 1975.CrossRefGoogle Scholar
  67. D.R. CALDWELL, J. Fuild Mech., 74, 129, 1976.ADSCrossRefGoogle Scholar
  68. M. GIGLIO and A. VENDRAMINI, Phys. Rev. Letters, 38, 26, 1977. 39, 1014, 1977.ADSCrossRefGoogle Scholar
  69. J.M. OLSON and F. ROSENBERGER, J. Fluid Mech., 92, 631, 1979.ADSCrossRefGoogle Scholar
  70. D. VILLERS, Mémoire de licence (M. Sc. Thesis), University of Mons, Belgium, 1982.Google Scholar
  71. J.K. PLATTEN, G. CHAVEPEYER and J. TELLIER, Phys. Letters, 44A, 479, 1973.ADSGoogle Scholar
  72. G. CHAVEPEYER, Bull. Acad. Roy. Belg. Cl. Sci., 60, 1433, 1974. see also Ph. D. Thesis, University of Mons, 1974.MathSciNetGoogle Scholar
  73. J.K. PLATTEN and G. CHAVEPEYER, Advances in Chemical Physics, 32, 281, 1975. Int. J. Heat Mass Transfer, 18, 1071, 1975. 19, 27, 1976. 20, 113, 1977.CrossRefGoogle Scholar
  74. V. DEGIORGIO, Phys. Rev. Letters, 41, 1293, 1978. Phys. Rev. A, 20, 2193, 1979.ADSCrossRefGoogle Scholar
  75. M.G. VELARDE and J.C. ANTORANZ, Phys. Letters, 72A, 123, 1979. 80A, 220, 1980.ADSGoogle Scholar
  76. J.K. PLATTEN and J.Cl. LEGROS, Phys. Rev. Letters, 45, 1944, 1980.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1984

Authors and Affiliations

  • Jean Karl Platten
    • 1
  • Jean Claude Legros
    • 2
  1. 1.Service de Chimie Physique ThermodynamiqueUniversité de l’Etat à Mons, Faculté des SciencesMonsBelgique
  2. 2.Ecole Polytechnique, Faculté des Sciences AppliquéesUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations