Rheology via Nonequilibrium Molecular Dynamics [1]

  • William G. Hoover
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 3)


The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheological molecular flows with fast computers. This modified “Nonequilibrium Molecular Dynamics” (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss’ 1829 “Least- Constraint” principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain- rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the “Principle of Material Frame Indifference.”


Pressure Tensor Simple Fluid Equilibrium Molecular Dynamic Nonequilibrium Molecular Dynamics NEMD Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    This work was supported, at Davis, by the Army Research Office and Electric Power Research Institute and carried out, at LLNL, under the auspices of the Department of Energy, under contract W-7405-ENG-48 with the University of California. Conversations and correspondence with Denis Evans, Jim Dufty, Jim Haile, Tony Ladd, Tom Leete, Bill Moran, and Solveig Shearer were pertinent, stimulating, and helpful.Google Scholar
  2. 2.
    Brush, S. G., Kinetic Theory, Vols. 1 (1948), II (1966), III Pergamon Press (1972).Google Scholar
  3. 3.
    Physica, Proceedings of the NBS Conference on Nonlinear Fluid Phenomena, Boulder, Colorado, June 1982 (1983, to appear).Google Scholar
  4. 4.
    Zwanzig, R., Kinam, Recent developments in non equilibrium statistical mechanics, Kinam .3, pp. 5–13 (1981).Google Scholar
  5. 5.
    Alder, B. J.; Wainwright, T., Molecular Dynamics by Electronic Computers, Proceedings of the [Brussels, 1956] International Symposium on Transport Processes in Statistical Mechanics, pp. 97–131, Prigogine, I. (ed.), Interscience (1958).Google Scholar
  6. 6.
    Rahman, A., Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev. 136, pp. A405–411 (1964).CrossRefGoogle Scholar
  7. 7.
    Levesque, D.; Verlet, L.; Kürkijarvi, J., Computer “Experiments” on Classical Fluids, IV. Transport Properties and Time-Correla- tion Functions of the Lennard-Jones Liquid near Its Triple Point, Phys. Rev. A 7, pp. 1690–1700 (1973).CrossRefGoogle Scholar
  8. 8.
    Erginsoy, C.; Vineyard, G. H.; Englert, A., Dynamics of Radiation Damage in a Body-Centered Cubic Lattice, Phys. Rev. 133, pp. A595–606 (1964).CrossRefGoogle Scholar
  9. 9.
    Irving, J. H.; Kirkwood, J. G., The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys. 18, pp. 817–829 (1950).CrossRefMathSciNetGoogle Scholar
  10. 10.
    McQuarrie, D. A., Statistical Mechanics, pp. 507–509, Harper & Row (1976).Google Scholar
  11. 11.
    Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H. ; Teller, E., Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, pp. 1087–1092 (1953).CrossRefGoogle Scholar
  12. 12.
    Wood, W. W., Monte Carlo Studies of Simple Liquid Models, Physics of Simple Liquids, pp. 114–230, Temperley, H. N. V.; Rowlmson, J. S.; Rushbrooke, G. S., (eds.), North-Holland (1968).Google Scholar
  13. 13.
    Hoover, W. G.; Alder, B. J., Studies in Molecular Dynamics. IV. The Pressure, Collision Rate, and Their Number Dependence for Hard Disks, J. Chem. Phys. 46, pp. 686–691 (1967).CrossRefGoogle Scholar
  14. 14.
    Mansoori, G. A.; Canfield, F. B., Variational Approach to the Equilibrium Thermodynamic Properties of Simple Fluids I., J. Chem. Phys. 51, pp. 4958–4972 (1969).CrossRefGoogle Scholar
  15. 15.
    Snook, I. K.; Watts, R. O. W., Perturbation theories in non-equi- librium statistical mechanics. I. Methods based on the time-dis- placement operator, II. Methods based on memory function forma- lism, Mol. Phys. 33 pp. 431–452 (1977).CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lees, A. W.; Edwards, S. F., The computer study of transport processes under extreme conditions, J. Phys. C, 5, pp. 1921–1929 (1972).CrossRefGoogle Scholar
  17. 17.
    Ashurst, W. T., Dense Fluid Shear Viscosity and Thermal Conductivity Via Non-Equilibrium Molecular Dynamics, dissertation, 174 pages, UC Davis-Livermore, (1974);Google Scholar
  18. 17a.
    Hoover, W. G.; Ashurst, W. T., “Nonequilibrium Molecular Dynamics” Advances in Theoretical Chemistry, I pp. 1–51 (1975)Google Scholar
  19. 18.
    Gosling, E. M.; McDonald, I. R.; Singer, K., On the calculation by molecular dynamics of the shear viscosity of a simple fluid, Mol. Phys. 26, pp. 1475–1484 (1973).CrossRefGoogle Scholar
  20. 19.
    Hoover, W. G., Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; Ashurst, W. T.; Moran, B., Lennard-Jones triple-point bulk and shear viscosities, Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics, Phys. Rev. A, 22, pp. 1690–1697 (1980).CrossRefGoogle Scholar
  21. 20.
    Holian, B. L.; Hoover, W. G.; Moran, B.; Straub, G. K., Shockwave structure via nonequilibrium molecular dynamics and Navier- Stokes continuum mechanics, Phys. Rev. A, 22, pp. 2298–2808 (1980).CrossRefGoogle Scholar
  22. 21.
    Evans, D. J., Homogeneous NEMD Algorithm for Thermal Conductivity: Application of Non-Canonical Linear Response Theory, Phys. Lets. A (to appear).Google Scholar
  23. 22.
    Evans, D. J., Computer Experiment for non-linear thermodynamics of Couette Flow, J. Chem. Phys. (to appear).Google Scholar
  24. 23.
    Gauss, K. F., Über., ein neues allgemeines Grundgesetz der Mechanik, Journal für die reine und angewandte Mathematik (“Crelle’s Journal”), Berlin, pp. 232–235 (1829).Google Scholar
  25. 24.
    Tolman, R. C., The Principles of Statistical Mechanics, Oxford University Press (1938).Google Scholar
  26. 25.
    I particularly thank Jim Dufty for educational conversations and correspondence illustrating the solution of the Boltzmann equation for various Couette-flow problems.Google Scholar
  27. 26.
    Chapman, S.; Cowling, T. G., The Mathematical Theory of Non- Uniform Gases, 3rd Ed., Cambridge University Press (1970).Google Scholar
  28. 27.
    Hoover, W. G.; Ladd, A. J. C.; Moran, B., High-Strain-Rate Plastic Flow via Nonequilibrium Molecular Dynamics, Phys. Rev. Lets. 48, pp. 1818–1820 (1982).CrossRefGoogle Scholar
  29. 28.
    Lamb, J., Viscoelasticity and Lubrication: A Review of Liquid Properties, J. Rheology, 22 pp. 317–347 (1978).CrossRefGoogle Scholar
  30. 29.
    Evans, D. J., Enhanced t-3/2 Long-Time Tail for the Stress-Stress Time Correlation Function, J. Stat. Phys. 22, pp. 81–90 (1980); Nonlinear Viscous Flow in the Lennard-Jones Fluid, Phys. Lets. 74A, pp. 229–232 (1979).CrossRefGoogle Scholar
  31. 30.
    Hanley, H. J. M.; Evans, D. J., A thermodynamics for a system under shear, J. Chem. Phys. 76, pp. 3225–3232 (1982).CrossRefGoogle Scholar
  32. 31.
    Hoover, W. G.; Moran, B.; More, R. M.; Ladd, A. J. C., Heat conduction in a rotating disk via nonequilibrium molecular dynamics, Phys. Rev. A, 24, pp. 2109–2115 (1981).CrossRefGoogle Scholar
  33. 32.
    Bellemans, A.; Ryckaert, J. P. (Belgium).Google Scholar
  34. 33.
    Berendsen, H. J. C. (Holland).Google Scholar
  35. 34.
    Frenkel, D.; Eppenga, R., Monte Carlo Study of the Isotropic- Nematic Transition in a Fluid of Thin Hard Disks, Phys. Rev. Lets., 49, pp. 1089–1092 (1982).CrossRefGoogle Scholar
  36. 35.
    Jenkins, J. T.; Savage, S. B., The Mean Stress Resulting from Interparticle Collisions in a Rapid Granular Shear Flow, submitted to the Proceedings of the Fourth International Conference on Continuum Models of Discrete Systems (Stockholm 29 June-4 July 1981).Google Scholar
  37. 36.
    Bird, R. Byron, Kinetic Theory and Constitutive Equations for Polymeric Liquids, J. Rheology, 26, pp. 277–299 (1982),; Polymer Kinetic Theories and Elongational Flows, Chem. Eng. Commun., 16, pp. 175–187 (1982).CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • William G. Hoover
    • 1
  1. 1.Department of Applied ScienceUniversity of California at Davis/Livermore and Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations