Parameter Uncertainty and Model Predictions: A Review of Monte Carlo Results

  • R. H. Gardner
  • R. V. O’Neill

Abstract

Uncertainty in ecological models (O’Neill and Gardner, 1979) is due to a number of factors. The total error associated with model predictions can only be assessed by a validation process (Caswell, 1976; Mankin et al., 1977) which tests the model against independent data (Shaeffer, 1979). However, such validation experiments are often infeasible, and modeling research has focused on individual factors that contribute to total error. These factors include assumptions in model construction (Harrison, 1978; Cale and Odell, 1979; O’Neill and Rust, 1979), measurement errors (O’Neill, 1973; Argentesi and Olivi, 1976), and errors in formulating ecosystem processes (O’Neill, 1979a).

Keywords

Carbide Covariance Radionuclide Fishing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argentesi, F. and Olivi, L. (1976). Statistical sensitivity analyses of a simulation model for the biomass-nutrient dynamics in aquatic ecosystems. Proceedings of the 4th Summer Computer Simulation Conference. Simulation Councils, La Jolla, California, pp. 389–393.Google Scholar
  2. Beck, M.B. (1979) Model structure identification from experimental data. In E. Halfon (Editor), Theoretical Systems Ecology. Academic Press, New York, pp. 259–289.Google Scholar
  3. Beck, M.B., Halfon, E., and van Straten, G. (1979). The Propagation of Errors and Uncertainty in Forecasting Water Quality; Part I: Method. WP-79–100.Google Scholar
  4. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  5. Cale, W.G. and Odell, P.L. (1979). Concerning aggregation in ecosystem modeling. In E. Halfon (Editor), Theoretical Systems Ecology. Academic Press, New York, pp. 55–77.Google Scholar
  6. Caswell, H. (1976). The validation problem. In B.C. Patten (Editor), Systems Analysis and Simulation in Ecology, Volume IV. Academic Press, New York, pp. 313–325.Google Scholar
  7. DiToro,D.M. and van Straten, G. (1979). Uncertainty in the Parameters and Predictions of Phytoplankton Models. WP-79–27.Google Scholar
  8. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  9. Gardner, R.H., Huff, D.D., O’Neill, R.V., Mankin, J.B., Carney, J., and Jones, J. (1980a). Application of error analysis to a marsh hydrology model. Water Resources Research, 16(4):659–664.CrossRefGoogle Scholar
  10. Gardner, R.H., O’Neill, R.V., Mankin, J.B., and Kumar, D. (1980b). Comparative error analysis of six predator-prey models. Ecology, 61(2):323–332.CrossRefGoogle Scholar
  11. Hahn, G.J. and Shapiro, S.S. (1968). Statistical Models in Engineering. Wiley, New York.Google Scholar
  12. Halfon, E. (1975). The systems identification problem and development of ecosystem models. Simulation, 38: 149–152.CrossRefGoogle Scholar
  13. Harrison, G.W. (1978). Compartmental lumping in mineral cycling models. In D.C. Adriano and I.L. Brisban (Editors), Environmental Chemistry and Cycling Processes. CONF-760429. National Technical Information Service, Springfield, Virginia, pp. 121–137.Google Scholar
  14. Huff, D.D. and Young, H.L. (1980). The effect of a marsh on runoff: I. A water-budget model. Journal of Environmental Quality, 9:633–640.CrossRefGoogle Scholar
  15. Leslie, P.H. (1945). On the uses of matrices in certain population mathematics. Biometrika, 33: 183–212.CrossRefGoogle Scholar
  16. Leslie, P.H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika, 35: 213–245.Google Scholar
  17. Lettenmaier, D.P. and Richey, J.E. (1979). Use of first order analysis in estimating mass balance errors and planning sampling activities. In E. Halfon (Editor), Theoretical Systems Ecology. Academic Press, New York, pp. 79–104.Google Scholar
  18. Mankin, J.B., O’Neill, R.V., Shugart, H.H., and Rust, B.W. (1977). The importance of validation in ecosystem analysis. In G.S. Innis (Editor), New Directions in the Analysis of Ecological Systems. Simulation Councils, La Jolla, California, pp. 63–71.Google Scholar
  19. Morgan, M.G., Morris, S.C., Meier, A.K., and Shenk, D.L. (1978). A probabilistic methodology for estimating air pollution health effects from coal-fired power plants. Energy Systems Policy, 2: 287–310.Google Scholar
  20. O’Neill, R.V. (1973). Error analysis of ecological models. In DJ. Nelson (Editor), Radionuclides in Ecosystems. CONF-710501. National Technical Information Service, Springfield, Virginia, pp. 898–908.Google Scholar
  21. O’Neill, R.V. (1979a). Natural variability as a source of error in model predictions. In G.S. Innis and R.V. O’Neill (Editors), Systems Analysis of Ecosystems. International Cooperative Publishing House, Fairland, Maryland, pp. 23–32.Google Scholar
  22. O’Neill, R.V. (1979b). Transmutations across hierarchical levels. In G.S. Innis and R.V. O’Neill (Editors), Systems Analysis of Ecosystems. International Cooperative Publishing House, Fairland, Maryland, pp. 59–78.Google Scholar
  23. O’Neill, R.V. and Gardner, R.H. (1979). Sources of uncertainty in ecological models. In B.P. Zeigler, M.S. Elzas, G.J. Klir, and T.L Oren (Editors), Methodology in Systems Modelling and Simulation. North-Holland Publishing Company, Amsterdam, pp. 447–483Google Scholar
  24. O’Neill, R.V. and Rust,B. (1979). Aggregation error in ecological models. Ecological Modelling, 7: 91–105.CrossRefGoogle Scholar
  25. O’Neill, R.V., Gardner, R.H., and Mankin, J.B. (1980). Analysis of parameter error in a nonlinear model. Ecological Modelling, 8: 297–311.CrossRefGoogle Scholar
  26. O’Neill, R.V., Gardner, R.H., Hoffman, F.O., and Swartz, G. (1981). Effects of parameter uncertainty on estimating radiological dose to man — a Monte Carlo approach. Health Physics, 40:760–764.Google Scholar
  27. Park, R.A., O’Neill, R.V., Bloomfield, J.A., Shugart, H.H., Booth, R.S., Goldstein, R.A., Mankin, J.B., Koonce, J.F., Scavia, D., Adams, M.S., Clesceri, L.S., Colon, E.M., Dettmann, E.H., Hoopes, J., Huff, D.D., Katz, S., Kitchell, J.F., Kohberger, R.C., LaRow, E.J., McNaught, D.C., Petersen, J., Titus, J., Weiler, P.R., Wilkinson, J.W., and Zahorcak, C.S. (1974). A generalized model for simulating lake ecosystems. Simulation, 23:33–50.CrossRefGoogle Scholar
  28. Shaeffer, D.L. (1979). A model evaluation methodology applicable to environmental assessment models. ORNL-5507. Oak Ridge National Laboratory, Oak Ridge, Tennessee.CrossRefGoogle Scholar
  29. Tiwari, J.L. and Hobbie, J.E. (1976). Random differential equations as models of ecosystems: Monte Carlo simulation approach. Mathematical Bioscience, 28: 25–44.CrossRefGoogle Scholar
  30. van Straten, G. and de Boer, B. (1979). Sensitivity to uncertainty in a phytoplankton-oxygen model for lowland streams. WP-79-28. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  31. Van Winkle, W., DeAngelis, D.L., and Blum, S.R. (1978). A density-dependent function for fishing mortality rate and a method for determining elements of a Leslie matrix with density-dependent parameters. Transactions of the American Fisheries Society, 107(3): 395–401.CrossRefGoogle Scholar

Copyright information

© International Institute for Applied Systems Analysis, Laxenburg/Austria 1983

Authors and Affiliations

  • R. H. Gardner
    • 1
  • R. V. O’Neill
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations