Advertisement

The Structure of an Axisymmetric Plane Turbulent Wall Jet

  • D. Codazzi
  • R. Teitgen
  • H. Burnage
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The flow of a turbulent axisymmetric wall jet is investigated. It is found that it tends rapidly to similarity. Special attention has been devoted to the effect of the entrainment of external flow into the turbulent region of the jet. This phenomenon appears to be particularly important in this configuration and is responsible for the existence of intermittent flow deep into the boundary layers part as put in evidence by various converging experimental results. An analysis of the joint probability density function of the longitudinal and normal components of the turbulent velocity fluctuation shows that the corresponding most probable value does not coincide with the mean value. This leads to the presumption that there exists a most probable pattern of streamlines, different from the mean pattern, which is related to the entrainment of external flow inside the turbulent region.

Keywords

Velocity Profile Probability Density Function Reynolds Shear Stress External Flow Joint Probability Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonia, R.A. and Bilger R.W.: An experimental investigation of an axisymmetric jet in a co-flowing air stream. J.F.M., vol. 61, p. 805, 1973.CrossRefGoogle Scholar
  2. 2.
    Bakke, P.: An experimental investigation of a wall jet. J.F.M., vol. 2 p. 467, 1957.CrossRefGoogle Scholar
  3. 3.
    Beguier, C.; Girait, F.; Fraunié, P. and Keffer, J.: Flux à contre gradient en aval de deux cylindres de diamètres différents. C.R. Acad. Sc. Paris, Vol. 289, Série B, p. 301, 1979.Google Scholar
  4. 4.
    Beguier, C.; Fulachier, L. and Keffer, J.: The turbulent mixing layer with an asymmetrical distribution of temperature. J.F.M., Vol. 89, p. 561, 1978.CrossRefGoogle Scholar
  5. 5.
    Bradshaw, P. and Gee, M.T.: Aero. Res. Connc. RaM, n° 3252, 1952.Google Scholar
  6. 6.
    Champagne, F.H., Sleicher, L.A. and Wehrmann, O.H.: Turbulence measurements with inclined hot wires. Part 1. Heat transfer experiments with inclined hot wires. J.F.M., vol. 28, p. 153, 1967.CrossRefGoogle Scholar
  7. 7.
    Codazzi, D.; Teitgen, R. and Burnage, H.: Jet turbulent pariétal axisymétrique. Similitude de l’écoulement hors de la couche limite. C.R. Acad. Se. Paris, t. 293, p. 103, 1981.ADSGoogle Scholar
  8. 8.
    Irwin, H.P.: Measurements in a self preserving plane wall jet in a positive pressure gradient. J.F.M., vol. 61, p. 33, 1973.CrossRefGoogle Scholar
  9. 9.
    Launder, B.E. : Private communication.Google Scholar
  10. 10.
    Mathieu, J.: Contribution à l’étude aérothermique d’un jet plan évoluant en présence d’une paroi. P.S.T., n° 165, 1959.Google Scholar
  11. 11.
    Ramaprian, B.R.: Turbulence measurements in an “equilibrium” wall jet. J.F.M., vol. 71, p. 317, 1975.CrossRefGoogle Scholar
  12. 12.
    Spettel, F.; Mathieu, J. and Brison, J.F.: Tensions de Reynolds et production d’énergie cinétique turbulente dans les jets pariétaux sur paroi plane et concave. J. Mécan., vol. 11, n° 3, p. 403, 1972.Google Scholar
  13. 13.
    Tanaka, T. and Tanaka, E.: Experimental studies of a radial turbulent jet. Bulletin of the J.S.M.E., vol. 20 n° 140, p. 209, 1977.Google Scholar
  14. 14.
    Tutu, N.K, and Chevray, R.: Cross-wire anemometry in high intensity turbulence. J.F.M., vol. 71, p. 785, 1975.CrossRefGoogle Scholar
  15. 15.
    Wygnanski, I. and Fielder, H.: Some measurements in the self preserving jet. J.F.M., vol. 38, p. 577, 1969.CrossRefGoogle Scholar

Copyright information

© Springer, Berlin Heidelberg New York 1983

Authors and Affiliations

  • D. Codazzi
    • 1
  • R. Teitgen
    • 1
  • H. Burnage
    • 1
  1. 1.Institut de Mécanique des FluidesUniversité Louis Pasteur de StrassbourgFrance

Personalised recommendations