Linear Transform Algorithms

  • Leonid P. Yaroslavsky
Part of the Springer Series in Information Sciences book series (SSINF, volume 9)


The discrete representation of linear transformations discussed in the pre-ceeding chapter requires efficient algorithmic implementation. The various aspects of this problem form the subject of this chapter.


Fast Algorithm Transformation Graph Factorize Representation Gray Code Hadamard Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    N. Ahmed, K.R. Rao: Orthogonal Transforms for Digital Signal Processing (Springer, Berlin, Heidelberg, New York 1975)MATHGoogle Scholar
  2. 5.2
    H.C. Andrews, J. Kane: J. Assoc. Comput. Mach. 17, 260 (1970)MathSciNetMATHCrossRefGoogle Scholar
  3. 5.3
    H.C. Andrews: Computer Techniques in Image Processing (Academic, New York 1970)Google Scholar
  4. 5.4
    B. Gold, C.M. Rader: Digital Processing of Signals (McGraw-Hill, New York 1969)MATHGoogle Scholar
  5. 5.5
    I.J. Good: J. Roy. Stat. Soc. B20, 362 (1958)MathSciNetGoogle Scholar
  6. 5.6
    R.E. Bogner, A. Constantinides (eds.): Introduction to Digital Filtering (Wiley, London 1975)Google Scholar
  7. 5.7
    A.M. Trakhtman: Avtom. Telemekh. 4, 81 (1974)MathSciNetGoogle Scholar
  8. 5.8
    D.K. Kahaner: IEEE Trans., AU-18,4, p.422 (1970)Google Scholar
  9. 5.9
    T. Theilheimer: IEEE Trans., AU-17,2, p.158 (1969)Google Scholar
  10. 5.10
    A.M. Trakhtman, V.A. Trakhtman: Osnovy teorii diskretnykh signalov na konechnykh intervalakh [Fundamentals of the Theory of Discrete Signals at Finite Intervals] (Sovetskoye Radio, Moscow, 1975)Google Scholar
  11. 5.11
    L. Rabiner, B. Gold: Theory and Applications of Digital Signal Processing (Prentice Hall, Englewood Cliffs, NJ 1975)Google Scholar
  12. 5.12
    L.P. Yaroslavsky, N.S. Merzlyakov: Methods of Digital Holography (Consultants Bureau, New York 1980)Google Scholar
  13. 5.13
    L.P. Yaroslavsky: Radiotekhnika 32, 15 (1977)Google Scholar
  14. 5.14
    L.P. Yaroslavsky: IEEE Trans. ASSP-29,3, p.448 (1981)CrossRefGoogle Scholar
  15. 5.15
    I. Delotto, D. Delotto: Comput. Graph. Image Proc. 4, 271 (1975)CrossRefGoogle Scholar
  16. 5.16
    W.B. Kend: IEEE Trans. C-23, 88 (1974)Google Scholar
  17. 5.17
    K.J. Nussbaumer, P. Quandalle: IBM J. Res. Dev. 22, 134 (1978)MathSciNetMATHCrossRefGoogle Scholar
  18. 5.18
    H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms , Springer Ser. Inform. Sci., Vol.2 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  19. 5.19
    I.S. Reed, N.M. Shao, T.R. Truong: Proc. IEEE 128, Part E, 1 (1981)Google Scholar
  20. 5.20
    J.H. McClellan, C.M. Rader: Number Theory in Digital Signal Processing (Prentice Hall, Englewood Cliffs, NJ 1979)MATHGoogle Scholar
  21. 5.21
    S. Winograd: Math. Comput. 32, 178 (1978)MathSciNetGoogle Scholar
  22. 5.22
    S. Zohar: IEEE Trans. ASSP-27, 4 (1978)Google Scholar
  23. 5.23
    S. Zohar: In Two Dimensional Digital Signal Processing II ,ed. by T.S. Huang, Topics Appl. Phys., Vol.43 (Springer, Berlin, Heidelberg, New York 1981) Chap.4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Leonid P. Yaroslavsky
    • 1
  1. 1.Institute for Information Transmission ProblemsMoscowUSSR

Personalised recommendations