Skip to main content

Historical Perspective

  • Chapter
  • 400 Accesses

Part of the book series: Communications and Control Engineering Series ((CCE))

Abstract

The field of linear differential equations with constant coefficients has been extensively studied as a unified body of knowledge; standard forms of solution are well-known and Laplace transform techniques can be readily applied to obtain both natural and forced responses. Consequently a large proportion of all physical systems, including a majority of electrical network configurations, can be adequately described mathematically. However when the constraints of linearity and constant coefficients are relaxed, the neatness of solution is lost and very often particular non-linear and/or time-varying1 systems and their associated differential equations have to be treated individually. Techniques devised for one type of system often cannot be generalised for use with another and consequently little or nothing is gained by developing stylised solution methods for the equations, such as those based upon integral transforms. Indeed it can even be difficult delineating classes of equation in many instances. A case which is an exception however is that of linear differential equations with coefficients that are periodically varying with time. As a class, so-called periodic differential equations exhibit similarities in behaviour, even though the solutions in most cases are not known in closed form, a feature which is exploited in Chapter five in developing modelling techniques for describing the dynamic behaviour of periodically varying systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 1

  1. McLachlan, N. W.: Theory and application of Mathieu functions. Clarendon: Oxford, U. P. 1947. Reprinted by Dover, New York 1964

    MATH  Google Scholar 

  2. Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. London, 121 (1831)229–318

    Google Scholar 

  3. Lord Rayleigh (Strutt, J. W.): On the crispations of fluid resting upon a vibrating support. Philos. Mag. 16 (1883) 50–58

    Google Scholar 

  4. Melde, F.: Über die Erregung stehender Wellen eines fadenförmigen Körpers. Ann. Phys. Chem. (Ser. 2) 109 (1860) 193–215

    Article  Google Scholar 

  5. Mathieu, E.: Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pure Appl. 13 (1868) 137

    Google Scholar 

  6. Mathieu, E.: Cours de mathématique physique. Paris 1873

    MATH  Google Scholar 

  7. Floquet, G.: Sur les équations differentiates linéaires. Ann. L’Ecole Normale Super. 12 (1883) 47

    MathSciNet  Google Scholar 

  8. Hill, G. W.: On the part of the moon’s motion which is a function of the mean motions of the sun and the moon. Acta Math. 8 (1886) 1–36

    Article  MATH  MathSciNet  Google Scholar 

  9. (a) von Koch, H.: Sur les déterminants infinis et les équations differentiales linéaires.

    Google Scholar 

  10. Acta Math. 16 (1892/93) 217–295

    Google Scholar 

  11. von Koch, H.: Sur une application des déterminants infinis à la théorie des équations differentiates linéaires. Acta Math. 15 (1891) 53–63

    Article  MATH  MathSciNet  Google Scholar 

  12. von Koch, H.: Sur quelques points de la théorie des déterminants infinis. Acta Math. 24 (1901) 89–122

    Article  MathSciNet  Google Scholar 

  13. Forsyth. A. R.: Theory of differential equations, Part II, Vol. III. New York: Dover 1959

    MATH  Google Scholar 

  14. Lord Rayleigh (Strutt, J. W.): On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure. Philos. Mag. (Ser. 5) 24 (1887) 143–159

    Google Scholar 

  15. Stephenson, A.: A class of forced oscillations. Q. J. Math. 37 (1906) 353

    Google Scholar 

  16. Stephenson, A.: New type of dynamical stability. Proc. Manch. Philos. Soc. 52 (1908)

    Google Scholar 

  17. Meissner, E.: Über Schüttelerscheinungen im System mit periodisch veränderlicher Elastizität. Schweiz. Bauztg. 72 (1918) 95–98

    Google Scholar 

  18. Carson, J. R.: Notes on theory of modulation. Proc. IRE 10 (1922) 62

    Article  Google Scholar 

  19. Jeffreys, H.: Approximate solutions of linear differential equations of second order. Proc. Lon. Math. Soc. 23 (1924) 428

    Article  MATH  Google Scholar 

  20. Strutt, M. J. O.: Wirbelströme im elliptischen Zylinder. Ann. Phys. 84 (1927) 485

    Article  Google Scholar 

  21. Strutt, M. J. O.: Der charakteristische Exponent der Hillschen Differentialgleichung. Math. Ann. 101 (1929) 559–569

    Article  MATH  MathSciNet  Google Scholar 

  22. Strutt, M. J. O.: Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. 1932

    Google Scholar 

  23. van der Pol, B.; Strutt, M. J. O.: On the stability of solutions of Mathieu’s equation. Philos. Mag. 5 (1928) 18–39

    Google Scholar 

  24. de Kronig, R. L.; Penney, W. G.: Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. (Ser. A) 130 (1931) 499–513

    Article  Google Scholar 

  25. Erdelyi, A.: Über die freien Schwingungen in Kondensatorkreisen mit periodisch veränderlicher Kapazität. Ann. Phys. 19 (1934) 585

    Article  MATH  Google Scholar 

  26. Erdelyi, A.: Zur Theorie des Pendelrückkopplers. Ann. Phys. 23 (1935) 21

    Article  MATH  Google Scholar 

  27. Barrow, W. L.; Smith, D. B.; Baumann, F. W.: Oscillatory circuits having periodically varying parameters. J. Frank. Inst. 221 (1936) 403

    Article  Google Scholar 

  28. Chu, L. H.: Electromagnetic waves in elliptical metal pipes. J. Appl. Phys. 9 (1938) 583

    Article  MATH  Google Scholar 

  29. Courant, E. D.; Livingston, M. S.; Snyder, H. S.: The strong focussing synchrotron— A new high energy accelerator. Phys. Rev. 88 (1952) 1190–1196

    Article  MATH  Google Scholar 

  30. Paul, W.; Steinwedel, H.: Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. 8a (1953) 448–450

    Google Scholar 

  31. Dawson, P. H.: Quadrupole mass spectrometry. Amsterdam: Elsevier 1976

    Google Scholar 

  32. Smith, B. D.: Analysis of commutated networks. IRE Trans. Aeronaut. Navig. Electron. AE-10 (1953) 21–26

    Google Scholar 

  33. Desoer, C. A.: Steady-state transmission through a network containing a single time- varying element. IRE Trans. Circuit Theory CT-6 (1959) 244–252

    Google Scholar 

  34. Fettweis, A.: Steady-state analysis of circuits containing a periodically-operated switch. IRE Trans. Circuit Theory CT-6 (1959) 252–260

    Google Scholar 

  35. Franks, L. E.; Sandberg, I. W.: An alternative approach to the realization of network transfer functions: the TV-path filter. Bell Syst. Tech. J. 39 (1960) 1321–1350

    Google Scholar 

  36. Mumford, W. M.: Some notes on the history of parametric transducers. Proc. IRE 48 (1960) 848–853

    Article  Google Scholar 

  37. Pipes, L. A.: Matrix solution of equations of the Mathieu-Hill type. J. Appl. Phys. 24 (1953) 902–910

    Article  MATH  MathSciNet  Google Scholar 

  38. Timoshenko, S. P.; Gere, J. M.: Theory of elastic stability, 2nd ed., New York: McGraw- Hill 1961

    Google Scholar 

  39. Lehane, J. A.; Paoloni, F. J.: Parametric amplification of Alfven waves. Plasma Phys. 14(1972)461–471

    Article  Google Scholar 

  40. Cramer, N. F.: Parametric excitation of ion-cyclotron waves. Plasma Phys. 17 (1975) 967–972

    Article  Google Scholar 

  41. Cramer, N. F.; Donelly I: Parametric excitation of kinetic Alfven waves. Plasma Phys. 26(1981)253

    Article  Google Scholar 

  42. Elachi, C: Waves in active and passive periodic structures: A review. Proc. IEEE 64 (1976) 1666–1698

    Article  Google Scholar 

  43. Hiller, J; Keenan, R. K.: Stability of finite width sampled data systems. Int. J. Control 8 (1968) 1–22

    Article  MATH  Google Scholar 

  44. Anand, D. K.; Yuhasz, R. S.; Whisnant, J. M.: Attitude motion in an eccentric orbit. J. Spacecr. Rockets 8 (1971) 903–905

    Article  Google Scholar 

  45. Levy, D. M.; Keller, J. B.: Instability intervals of Hill’s equation. Comm. Pure Appl. Math. 16 (1963) 469–476

    Article  MATH  MathSciNet  Google Scholar 

  46. Hochstadt, H.: A special Hill’s equation with discontinuous coefficients. Am. Math. Monthly 70 (1963) 18–26

    Article  MATH  MathSciNet  Google Scholar 

  47. Hochstadt, H.: Instability intervals of Hill’s equation. Comm. Pure Appl. Math. 17 (1964)251–255

    Article  MATH  MathSciNet  Google Scholar 

  48. Hochstadt, H.: On the stability of certain second order differential equations. J. Soc. Ind. Appl. Math. 12 (1964) 58–59

    Article  MATH  MathSciNet  Google Scholar 

  49. Hochstadt, H.: A stability estimate for differential equations with periodic coefficients. Arh. Math. 15 (1964) 318–320

    Article  MATH  MathSciNet  Google Scholar 

  50. Hochstadt, H.: An inverse problem for Hill’s equation. J. Diff. Eq. 20 (1976) 53–60

    Article  MATH  MathSciNet  Google Scholar 

  51. Goldberg, W; Hochstadt, H; On a Hill’s equation with selected gaps in its spectrum. J. Diff. Eqs. 34 (1979) 167–178

    Article  MATH  MathSciNet  Google Scholar 

  52. Magnus, W.; Winkler, S.: Hill’s equation. New York: Wiley 1966

    MATH  Google Scholar 

  53. Loud, W. S.: Stability regions for Hill’s equation. J. Diff. Eq. 19 (1975) 226–241

    Article  MATH  MathSciNet  Google Scholar 

  54. Trubowitz, E: The inverse problem for periodic potentials. Comm. Pure Appl. Math. XXX (1977) 321–337

    Article  MathSciNet  Google Scholar 

  55. Mostaghel, N: Stability regions of Hill’s equation J. Inst. Math. Appl. 19 (1977) 253–259

    Article  MATH  MathSciNet  Google Scholar 

  56. Berryman, J. G.: Floquet exponent for instability intervals of Hill’s equation. Comm. Pure Appl. Math. XXX11 (1979) 113–120.

    Article  MathSciNet  Google Scholar 

  57. Taylor, J. H.; Narendra, K. S.: Stability regions for the damped Mathieu equation. SIAM J. Appl. Math. 17 (1969) 343–352

    Article  MATH  MathSciNet  Google Scholar 

  58. Gunderson, H.; Rigas, H.; van Vleck, F. S.: A technique for determining the stability of the damped Mathieu equation. SIAM J. Appl. Math. 20 (1974) 345–349

    Article  Google Scholar 

  59. Cooley, W. W.; Clark, R. N.; Buckner, R. C.: Stability in a linear system having a time-variable parameter. IEEE Trans. Autom. Control AC-9 (1964) 426–434

    Article  Google Scholar 

  60. Keenan, R. K.: Exact results for a parametrically phase-locked oscillator. IEEE Trans. Circuit Theory CT-14 (1967) 319–335

    Article  Google Scholar 

  61. Sandberg, I. W.: On the stability of solutions of linear differential equations with periodic coefficients. J. Soc. Ind. Appl. Math. 12 (1964) 487–496

    Article  MATH  MathSciNet  Google Scholar 

  62. Meadows, H. E.: Solutions of systems of linear ordinary differential equations with periodic coefficients. Bell Syst. Tech. J. 41 (1962) 1276–1294

    MathSciNet  Google Scholar 

  63. Richards, J. A.; Miller, D. J.: Features of mode diagrams for lth order periodic systems. SIAM J. Appl. Math. 25 (1973) 72–82

    Article  MATH  MathSciNet  Google Scholar 

  64. Richards, J. A.; Cristaudo, P. G.: Parametric aspects of mode and stability diagrams for general periodic systems. IEEE Trans. Circuit Syst. CAS-24 (1977) 241–247

    Article  MATH  Google Scholar 

  65. Bohr, H: Almost periodic functions, (transl. Cohn, H; Steinhardt, F.) New York: Chelsea 1947

    Google Scholar 

  66. Fink, A. M.: Almost periodic differential equations. Berlin, Heidelberg, New York: Springer 1974

    MATH  Google Scholar 

  67. Dellwo, D. R.; Friedman, M. B.: Uniform asymptotic solutions for a differential equation with an almost periodic coefficient. SIAM J. Appl. Math. 36 (1979) 137–147

    Article  MATH  MathSciNet  Google Scholar 

  68. Davis, S. H.; Rosenblat, S.: A quasi-periodic Mathieu-Hill equation. SIAM J. Appl. Math. 38 (1980) 139–155

    Article  MATH  MathSciNet  Google Scholar 

  69. Chow, P. L.; Chiou, K. L.: Asymptotic stability of randomly perturbed linear periodic systems. SIAM J. Appl. Math. 40 (1981) 315–326

    Article  MATH  MathSciNet  Google Scholar 

  70. Keenan, R. K.: An investigation of some problems in periodically parametric systems. PhD Thesis, Monash University Melbourne, 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Richards, J.A. (1983). Historical Perspective. In: Analysis of Periodically Time-Varying Systems. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81873-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81873-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81875-2

  • Online ISBN: 978-3-642-81873-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics