Advertisement

Historical Perspective

  • J. A. Richards
Part of the Communications and Control Engineering Series book series (CCE)

Abstract

The field of linear differential equations with constant coefficients has been extensively studied as a unified body of knowledge; standard forms of solution are well-known and Laplace transform techniques can be readily applied to obtain both natural and forced responses. Consequently a large proportion of all physical systems, including a majority of electrical network configurations, can be adequately described mathematically. However when the constraints of linearity and constant coefficients are relaxed, the neatness of solution is lost and very often particular non-linear and/or time-varying1 systems and their associated differential equations have to be treated individually. Techniques devised for one type of system often cannot be generalised for use with another and consequently little or nothing is gained by developing stylised solution methods for the equations, such as those based upon integral transforms. Indeed it can even be difficult delineating classes of equation in many instances. A case which is an exception however is that of linear differential equations with coefficients that are periodically varying with time. As a class, so-called periodic differential equations exhibit similarities in behaviour, even though the solutions in most cases are not known in closed form, a feature which is exploited in Chapter five in developing modelling techniques for describing the dynamic behaviour of periodically varying systems.

Keywords

Linear Differential Equation Parametric Excitation Hill Equation Capacitor Voltage Alfven Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 1

  1. 1.
    McLachlan, N. W.: Theory and application of Mathieu functions. Clarendon: Oxford, U. P. 1947. Reprinted by Dover, New York 1964zbMATHGoogle Scholar
  2. 2.
    Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. London, 121 (1831)229–318Google Scholar
  3. 3.
    Lord Rayleigh (Strutt, J. W.): On the crispations of fluid resting upon a vibrating support. Philos. Mag. 16 (1883) 50–58Google Scholar
  4. 4.
    Melde, F.: Über die Erregung stehender Wellen eines fadenförmigen Körpers. Ann. Phys. Chem. (Ser. 2) 109 (1860) 193–215CrossRefGoogle Scholar
  5. 5.
    Mathieu, E.: Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pure Appl. 13 (1868) 137Google Scholar
  6. 6.
    Mathieu, E.: Cours de mathématique physique. Paris 1873zbMATHGoogle Scholar
  7. 7.
    Floquet, G.: Sur les équations differentiates linéaires. Ann. L’Ecole Normale Super. 12 (1883) 47MathSciNetGoogle Scholar
  8. 8.
    Hill, G. W.: On the part of the moon’s motion which is a function of the mean motions of the sun and the moon. Acta Math. 8 (1886) 1–36zbMATHMathSciNetCrossRefGoogle Scholar
  9. (a) von Koch, H.: Sur les déterminants infinis et les équations differentiales linéaires.Google Scholar
  10. Acta Math. 16 (1892/93) 217–295Google Scholar
  11. (b).
    von Koch, H.: Sur une application des déterminants infinis à la théorie des équations differentiates linéaires. Acta Math. 15 (1891) 53–63zbMATHMathSciNetCrossRefGoogle Scholar
  12. (c).
    von Koch, H.: Sur quelques points de la théorie des déterminants infinis. Acta Math. 24 (1901) 89–122MathSciNetCrossRefGoogle Scholar
  13. 10.
    Forsyth. A. R.: Theory of differential equations, Part II, Vol. III. New York: Dover 1959zbMATHGoogle Scholar
  14. 11.
    Lord Rayleigh (Strutt, J. W.): On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure. Philos. Mag. (Ser. 5) 24 (1887) 143–159Google Scholar
  15. 12.
    Stephenson, A.: A class of forced oscillations. Q. J. Math. 37 (1906) 353Google Scholar
  16. 13.
    Stephenson, A.: New type of dynamical stability. Proc. Manch. Philos. Soc. 52 (1908)Google Scholar
  17. 14.
    Meissner, E.: Über Schüttelerscheinungen im System mit periodisch veränderlicher Elastizität. Schweiz. Bauztg. 72 (1918) 95–98Google Scholar
  18. 15.
    Carson, J. R.: Notes on theory of modulation. Proc. IRE 10 (1922) 62CrossRefGoogle Scholar
  19. 16.
    Jeffreys, H.: Approximate solutions of linear differential equations of second order. Proc. Lon. Math. Soc. 23 (1924) 428zbMATHCrossRefGoogle Scholar
  20. 17.
    Strutt, M. J. O.: Wirbelströme im elliptischen Zylinder. Ann. Phys. 84 (1927) 485CrossRefGoogle Scholar
  21. 18.
    Strutt, M. J. O.: Der charakteristische Exponent der Hillschen Differentialgleichung. Math. Ann. 101 (1929) 559–569zbMATHMathSciNetCrossRefGoogle Scholar
  22. 19.
    Strutt, M. J. O.: Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. 1932Google Scholar
  23. 20.
    van der Pol, B.; Strutt, M. J. O.: On the stability of solutions of Mathieu’s equation. Philos. Mag. 5 (1928) 18–39Google Scholar
  24. 21.
    de Kronig, R. L.; Penney, W. G.: Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. (Ser. A) 130 (1931) 499–513CrossRefGoogle Scholar
  25. 22(a).
    Erdelyi, A.: Über die freien Schwingungen in Kondensatorkreisen mit periodisch veränderlicher Kapazität. Ann. Phys. 19 (1934) 585zbMATHCrossRefGoogle Scholar
  26. (b).
    Erdelyi, A.: Zur Theorie des Pendelrückkopplers. Ann. Phys. 23 (1935) 21zbMATHCrossRefGoogle Scholar
  27. 23.
    Barrow, W. L.; Smith, D. B.; Baumann, F. W.: Oscillatory circuits having periodically varying parameters. J. Frank. Inst. 221 (1936) 403CrossRefGoogle Scholar
  28. 24.
    Chu, L. H.: Electromagnetic waves in elliptical metal pipes. J. Appl. Phys. 9 (1938) 583zbMATHCrossRefGoogle Scholar
  29. 25.
    Courant, E. D.; Livingston, M. S.; Snyder, H. S.: The strong focussing synchrotron— A new high energy accelerator. Phys. Rev. 88 (1952) 1190–1196zbMATHCrossRefGoogle Scholar
  30. 26.
    Paul, W.; Steinwedel, H.: Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. 8a (1953) 448–450Google Scholar
  31. 27.
    Dawson, P. H.: Quadrupole mass spectrometry. Amsterdam: Elsevier 1976Google Scholar
  32. 28.
    Smith, B. D.: Analysis of commutated networks. IRE Trans. Aeronaut. Navig. Electron. AE-10 (1953) 21–26Google Scholar
  33. 29.
    Desoer, C. A.: Steady-state transmission through a network containing a single time- varying element. IRE Trans. Circuit Theory CT-6 (1959) 244–252Google Scholar
  34. 30.
    Fettweis, A.: Steady-state analysis of circuits containing a periodically-operated switch. IRE Trans. Circuit Theory CT-6 (1959) 252–260Google Scholar
  35. 31.
    Franks, L. E.; Sandberg, I. W.: An alternative approach to the realization of network transfer functions: the TV-path filter. Bell Syst. Tech. J. 39 (1960) 1321–1350Google Scholar
  36. 32.
    Mumford, W. M.: Some notes on the history of parametric transducers. Proc. IRE 48 (1960) 848–853CrossRefGoogle Scholar
  37. 33.
    Pipes, L. A.: Matrix solution of equations of the Mathieu-Hill type. J. Appl. Phys. 24 (1953) 902–910zbMATHMathSciNetCrossRefGoogle Scholar
  38. 33a.
    Timoshenko, S. P.; Gere, J. M.: Theory of elastic stability, 2nd ed., New York: McGraw- Hill 1961Google Scholar
  39. 33b.
    Lehane, J. A.; Paoloni, F. J.: Parametric amplification of Alfven waves. Plasma Phys. 14(1972)461–471CrossRefGoogle Scholar
  40. 33c.
    Cramer, N. F.: Parametric excitation of ion-cyclotron waves. Plasma Phys. 17 (1975) 967–972CrossRefGoogle Scholar
  41. 33d.
    Cramer, N. F.; Donelly I: Parametric excitation of kinetic Alfven waves. Plasma Phys. 26(1981)253CrossRefGoogle Scholar
  42. 33e.
    Elachi, C: Waves in active and passive periodic structures: A review. Proc. IEEE 64 (1976) 1666–1698CrossRefGoogle Scholar
  43. 33f.
    Hiller, J; Keenan, R. K.: Stability of finite width sampled data systems. Int. J. Control 8 (1968) 1–22zbMATHCrossRefGoogle Scholar
  44. 34.
    Anand, D. K.; Yuhasz, R. S.; Whisnant, J. M.: Attitude motion in an eccentric orbit. J. Spacecr. Rockets 8 (1971) 903–905CrossRefGoogle Scholar
  45. 35.
    Levy, D. M.; Keller, J. B.: Instability intervals of Hill’s equation. Comm. Pure Appl. Math. 16 (1963) 469–476zbMATHMathSciNetCrossRefGoogle Scholar
  46. 36.
    Hochstadt, H.: A special Hill’s equation with discontinuous coefficients. Am. Math. Monthly 70 (1963) 18–26zbMATHMathSciNetCrossRefGoogle Scholar
  47. Hochstadt, H.: Instability intervals of Hill’s equation. Comm. Pure Appl. Math. 17 (1964)251–255zbMATHMathSciNetCrossRefGoogle Scholar
  48. 38.
    Hochstadt, H.: On the stability of certain second order differential equations. J. Soc. Ind. Appl. Math. 12 (1964) 58–59zbMATHMathSciNetCrossRefGoogle Scholar
  49. 39.
    Hochstadt, H.: A stability estimate for differential equations with periodic coefficients. Arh. Math. 15 (1964) 318–320zbMATHMathSciNetCrossRefGoogle Scholar
  50. 40.
    Hochstadt, H.: An inverse problem for Hill’s equation. J. Diff. Eq. 20 (1976) 53–60zbMATHMathSciNetCrossRefGoogle Scholar
  51. 40a.
    Goldberg, W; Hochstadt, H; On a Hill’s equation with selected gaps in its spectrum. J. Diff. Eqs. 34 (1979) 167–178zbMATHMathSciNetCrossRefGoogle Scholar
  52. 41.
    Magnus, W.; Winkler, S.: Hill’s equation. New York: Wiley 1966zbMATHGoogle Scholar
  53. 42.
    Loud, W. S.: Stability regions for Hill’s equation. J. Diff. Eq. 19 (1975) 226–241zbMATHMathSciNetCrossRefGoogle Scholar
  54. 42a.
    Trubowitz, E: The inverse problem for periodic potentials. Comm. Pure Appl. Math. XXX (1977) 321–337MathSciNetCrossRefGoogle Scholar
  55. 42b.
    Mostaghel, N: Stability regions of Hill’s equation J. Inst. Math. Appl. 19 (1977) 253–259zbMATHMathSciNetCrossRefGoogle Scholar
  56. 42c.
    Berryman, J. G.: Floquet exponent for instability intervals of Hill’s equation. Comm. Pure Appl. Math. XXX11 (1979) 113–120.MathSciNetCrossRefGoogle Scholar
  57. 43.
    Taylor, J. H.; Narendra, K. S.: Stability regions for the damped Mathieu equation. SIAM J. Appl. Math. 17 (1969) 343–352zbMATHMathSciNetCrossRefGoogle Scholar
  58. 44.
    Gunderson, H.; Rigas, H.; van Vleck, F. S.: A technique for determining the stability of the damped Mathieu equation. SIAM J. Appl. Math. 20 (1974) 345–349CrossRefGoogle Scholar
  59. 45.
    Cooley, W. W.; Clark, R. N.; Buckner, R. C.: Stability in a linear system having a time-variable parameter. IEEE Trans. Autom. Control AC-9 (1964) 426–434CrossRefGoogle Scholar
  60. 46.
    Keenan, R. K.: Exact results for a parametrically phase-locked oscillator. IEEE Trans. Circuit Theory CT-14 (1967) 319–335CrossRefGoogle Scholar
  61. 47.
    Sandberg, I. W.: On the stability of solutions of linear differential equations with periodic coefficients. J. Soc. Ind. Appl. Math. 12 (1964) 487–496zbMATHMathSciNetCrossRefGoogle Scholar
  62. 48.
    Meadows, H. E.: Solutions of systems of linear ordinary differential equations with periodic coefficients. Bell Syst. Tech. J. 41 (1962) 1276–1294MathSciNetGoogle Scholar
  63. 49.
    Richards, J. A.; Miller, D. J.: Features of mode diagrams for lth order periodic systems. SIAM J. Appl. Math. 25 (1973) 72–82zbMATHMathSciNetCrossRefGoogle Scholar
  64. 50.
    Richards, J. A.; Cristaudo, P. G.: Parametric aspects of mode and stability diagrams for general periodic systems. IEEE Trans. Circuit Syst. CAS-24 (1977) 241–247zbMATHCrossRefGoogle Scholar
  65. 50a.
    Bohr, H: Almost periodic functions, (transl. Cohn, H; Steinhardt, F.) New York: Chelsea 1947Google Scholar
  66. 50b.
    Fink, A. M.: Almost periodic differential equations. Berlin, Heidelberg, New York: Springer 1974zbMATHGoogle Scholar
  67. 50c.
    Dellwo, D. R.; Friedman, M. B.: Uniform asymptotic solutions for a differential equation with an almost periodic coefficient. SIAM J. Appl. Math. 36 (1979) 137–147zbMATHMathSciNetCrossRefGoogle Scholar
  68. 50d.
    Davis, S. H.; Rosenblat, S.: A quasi-periodic Mathieu-Hill equation. SIAM J. Appl. Math. 38 (1980) 139–155zbMATHMathSciNetCrossRefGoogle Scholar
  69. 50e.
    Chow, P. L.; Chiou, K. L.: Asymptotic stability of randomly perturbed linear periodic systems. SIAM J. Appl. Math. 40 (1981) 315–326zbMATHMathSciNetCrossRefGoogle Scholar
  70. 51.
    Keenan, R. K.: An investigation of some problems in periodically parametric systems. PhD Thesis, Monash University Melbourne, 1966Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1983

Authors and Affiliations

  • J. A. Richards
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of New South WalesKensingtonAustralia

Personalised recommendations