Calculation of Energetic and Biochemical Equivalents of Respiratory Oxygen Consumption

  • E. Gnaiger


The evaluation of metabolic energy loss is the major aim of respiratory studies in ecological energetics and for the construction of energy budgets. The polarographic oxygen sensor is becoming the prominent tool for indirect calorimetry in laboratory as well as in field investigations (Parts II and III). In this context a comprehensive outline of the calculation procedures for conversion of oxygen consumption data to energy equivalents is warranted. A more rigorous treatment of the subject will be presented elsewhere [6].


Respiratory Quotient Indirect Calorimetry Energy Equivalent Bomb Calorimetry Metabolic Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaxter KL (1967) The energy metabolism of ruminants. Hutchinson Scientific and Technical, London, 332 ppGoogle Scholar
  2. 2.
    Domalski ES (1972) Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P and S. J Phys Chem Ref Data 1: 221–277CrossRefGoogle Scholar
  3. 3.
    Elliott JM, Davison W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201CrossRefGoogle Scholar
  4. 4.
    Gnaiger E (1977) Thermodynamic consideration of invertebrate anoxibiosis. In: Lamprecht I, Schaarschmidt B (eds) Application of calorimetry in life sciences. Walter de Gruyter, Berlin, pp 281–303Google Scholar
  5. 5.
    Gnaiger E (1980) Das kalorische Äquivalent des ATP-Umsatzes im aeroben und anoxischen Metabolismus. Thermochim Acta 40: 195–223CrossRefGoogle Scholar
  6. 6.
    Gnaiger E (in prep) Energy equivalents of oxygen consumption in relation to direct calorimetry and energy budgets in aquatic animalsGoogle Scholar
  7. 7.
    Weast RC (1974–1975) Handbook of chemistry and physics. CRC PressGoogle Scholar
  8. 8.
    Ivlev VS (1934) Eine Mikromethode zur Bestimmung des Kaloriengehaltes von Nährstoffen. Biochem Z 275:49–55Google Scholar
  9. 9.
    Kleiber M (1961) The fire of life. An introduction to animal energetics. John Wiley, New York, 454 ppGoogle Scholar
  10. 10.
    Vanderzee CE, Mansson M, Wadsö I, Sunner S (1972) Enthalpies of formation of mono-and diammonium succinates and of aqueous ammonia and ammonium ion. J Chem Thermodynamics 4: 541–5 5 0CrossRefGoogle Scholar
  11. 11.
    Wilhoit I (1969) Selected values of thermodynamic properties. In: Brown HD (ed) Biochemical microcalorimetry. Academic Press, New York, pp 305–317Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • E. Gnaiger
    • 1
    • 2
  1. 1.Institut für Zoologie, Abteilung ZoophysiologieUniversität InnsbruckInnsbruckAustria
  2. 2.Institute for Marine Environmental ResearchThe Hoe, PlymouthGreat Britain

Personalised recommendations