Self-Consistent Diagrammatic Theory of Anderson Localization

  • P. Wölfle
  • D. Vollhardt
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 39)

Abstract

The model of independent electrons interacting with static, randomly distributed, pointlike scatterers is treated in the extended state perturbation theory at zero temperature. We discuss several types of infrared divergent contributions indicating the onset of Anderson localization. Beyond perturbation theory, using a novel classification scheme of diagrams for the total vertex function, a self-consistent equation for the frequency dependent diffusion coefficient is derived. Solving these equations, one finds that for d ≤ 2 states are always localized, while for d > 2 particles are delocalized for sufficiently weak disorder. We calculate properties in the critical region, e.g. critical exponents and scaling behavior. Defining a frequency dependent conductance we derive a scaling equation and explicitly calculate the corresponding β-function. By a plausible extension we also investigate the length-dependent conductance and its β-function. Where comparison is possible the results agree with those of renormalization group calculations.

Keywords

Summing Prent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Phys.Rev. 109, 1492 (1958).CrossRefADSGoogle Scholar
  2. [2]
    N.F. Mott, Philos.Mag. 13, 989 (1966)CrossRefADSGoogle Scholar
  3. N.F. Mott, Adv. Phys. 16, 49 (1967).CrossRefADSGoogle Scholar
  4. [3]
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys.Rev.Lett. 42, 673 (1979).CrossRefADSGoogle Scholar
  5. [4]
    D.J. Thouless, Phys.Rep. 13C, 93 (1974).CrossRefADSGoogle Scholar
  6. [5]
    S.F. Edwards, Philos.Mag. 8, 1020 (1958).CrossRefADSGoogle Scholar
  7. [6]
    F.J. Wegner, Z.Phys. B25, 327 (1976).ADSGoogle Scholar
  8. [7]
    F.J. Wegner, Phys.Rev. B19, 783 (1979).ADSGoogle Scholar
  9. [8]
    R. Oppermann, F. Wegner, Z.Phys. B34, 327 (1979).ADSGoogle Scholar
  10. [9]
    F.J. Wegner, Z.Phys. B35, 207 (1979).ADSGoogle Scholar
  11. [10]
    S. Hikami, Phys.Rev. 174, 2671 (1981).Google Scholar
  12. [11]
    K.B. Efetov, A.I. Larkin, D. E. Khmelnitskii, JETP (Soviet) 52, 568 (1980).ADSGoogle Scholar
  13. [12]
    W. Götze, Solid State Commun. 27, 1393 (1978)CrossRefADSGoogle Scholar
  14. W. Götze, J.Phys. C12, 1279 (1979)ADSGoogle Scholar
  15. W. Götze, Philos.Mag. 43, 219 (1981).CrossRefGoogle Scholar
  16. [13]
    A. Gold, W. Götze, J.Phys. C14, 4049 (1981).ADSGoogle Scholar
  17. [14]
    D. Belitz, W. Götze, Philos.Mag. B43, 517 (1981).Google Scholar
  18. [15]
    A. Gold, S.J. Allen, B.A. Wilson, D.C. Tsui, Phys.Rev. B (in press).Google Scholar
  19. [16]
    D. Vollhardt, P. Wölfle, Phys.Rev.Lett. 45, 842 (1980)CrossRefADSGoogle Scholar
  20. D. Vollhardt, P. Wölfle, Phys.Rev. B22, 4666 (1980).ADSGoogle Scholar
  21. [17]
    D. Vollhartom, P. Wölfle, to be published.Google Scholar
  22. [18]
    A. Kawabata, Solid State Commun. 38, 823 (1981).CrossRefADSGoogle Scholar
  23. [19]
    P. Prelovsek, in Recent Deveeopments to Condensed Mattete. Physics, ed. by J.T. Devreese (Plenum Press 1981 ).Google Scholar
  24. [20]
    D. Belitz, A. Gold, W. Götze, Z.Phys. B44, 273 (1981).CrossRefADSGoogle Scholar
  25. [21]
    A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyshinskii, Methods 06 Quantum FLeld Theory in Statístíca.l Phys ics, ( Prentice Hall, Eaglewood Cliffs, 1969 ).Google Scholar
  26. [22]
    S.V. Maleev, B.P. Toperverg, JETP (Soviet) 42, 734 (1976).Google Scholar
  27. [23]
    W. Götze, P. Prelovsek, P. Wölfle, Solid State Commun. 30, 369 (1979).CrossRefGoogle Scholar
  28. [24]
    L.P. Gor’kov, A.I. Larkin and D.E. Khmel’nitskii, JETP (Soviet) Lett. 30, 228 (1979).ADSGoogle Scholar
  29. [25]
    V.L. Berezinsky, JETP (Soviet) 38, 620 (1974).ADSGoogle Scholar
  30. [26]
    A.A. Abrikosov, I.A. Ryshkin, Adv. Phys. 27, 147 (1978).CrossRefADSGoogle Scholar
  31. [27]
    A.J. McKane, M. Stone, Ann.Phys. 131, 131 (1981).MathSciNetGoogle Scholar
  32. [28]
    S. Hikami, these Proceedings.Google Scholar
  33. [29]
    B. Shapiro, Phys.Rev. B (in press).Google Scholar
  34. [30]
    B. Shapiro, E. Abrahams, Phys.Rev. B24, 4889 (1981).ADSGoogle Scholar
  35. [31]
    N.F. Mott, Philos. Mag. 22, 7 ( 1970CrossRefADSGoogle Scholar
  36. [32]
    Y. Imry, J.Appl.Phys. 55, 1812 (1981).Google Scholar
  37. [33]
    B.L. Altshuler, D.E. KíFmelnitskii, A.I. Larkin, P.A. Lee, Phys.Rev. B22, 5142 (1980).ADSGoogle Scholar
  38. [34]
    S. Hikami, A.I. Larkin, Y. Nagaoka, Progr.Theor.Phys. 63, 707 (1980).CrossRefADSGoogle Scholar
  39. [35]
    P.A. Lee, J.Non.Cryst.Sol. 35, 2. 1 (1980).ADSGoogle Scholar
  40. [36]
    D.E. Khmelnitskii, Nordita preprint (1980).Google Scholar
  41. [37]
    R. Oppermann, J.Phys. C14, 3757 (1981).ADSGoogle Scholar
  42. [38]
    Y. Ono, D.Yoshioka, H. Fukuyama, J.Phys.Soc. Japan 50, 2143 (1981)CrossRefADSGoogle Scholar
  43. D. Yoshioka, Y. Ono, H. Fukuyama, J.Phys.Soc. Japan 50, 3419 (1981)CrossRefADSGoogle Scholar
  44. D. Yoshioka, these Proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • P. Wölfle
    • 1
    • 2
  • D. Vollhardt
    • 2
  1. 1.Physik-DepartmentTechnischen Universität MünchenGarchingFed. Rep. of Germany
  2. 2.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMünchenFed. Rep. of Germany

Personalised recommendations