Advertisement

Model Self-Consistent Bands for Graphite Intercalation Compounds

  • S. A. Safran
  • N. A. W. Holzwarth
  • D. R. Hamann
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 38)

Abstract

The electronic energy levels and charge distribution of the π electrons in high stage graphite intercalation compounds are determined within a self-consistent model. The model for a stage n compound treats the graphite π electrons in terms of a three-dimensional LCAO Hamiltonian. The effects of the inhomogeneous distribution of electrons in the n carbon layers (screening) are taken into account by adding a self-consistently determined layer potential term to the LCAO Hamiltonian, while the σ electrons are treated in terms of a background dielectric constant. The model energy bands, potentials, and charge distributions for a third stage compound are compared with the results of a first-principles, self-consistent calculation for LiC18.

Keywords

Graphite Layer Intercalation Compound Interior Layer Effective Dielectric Constant Graphite Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pietronero, S. Strassler, H. R. Zeller and M. J. Rice, Phys. Rev. Lett. 41, 763 (1978), Solid State Comm. 30, 399 (1979).ADSGoogle Scholar
  2. 2.
    J. Blinowski, N. Hau, C. Rigaux, J. P. Vieren, R. Le Toullec, G. Furdin, A. Herold, and C. Melin, J. Phys. (Paris) 41, 47, 667 (1980).Google Scholar
  3. 3.
    S. A. Safran and D. R. Hamman, Phys. Rev. B. 22, 606 (1980) and Phys. Rev. B 23, 565 (1981).Google Scholar
  4. 4.
    N. A. W. Holzwarth, Phys. Rev. B 21, 3665 (1980).CrossRefADSGoogle Scholar
  5. 5.
    G. Dresse!haus, S. Shayegan, T. Chieu and S. Y. Leung, Solid State Comm. 35, 819 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. E. Fischer and T. E. Thompson, Phys. Today 31 (7), 36 (1977).CrossRefGoogle Scholar
  7. 7.
    Proceedings of the Second International Conference on Intercalation Compounds of Graphite, Provincetown, Mass. 1980, J. Synth. Metals, 3 (1980).Google Scholar
  8. 8.
    N. A. W. Holzwarth, S. G. Louie, and S. Rabbi (to be published).Google Scholar
  9. 9.
    D. Billaud, E. McRae, J. F. Mareche, and A. Herold, Synth. Metals, 3, 21, (1981).CrossRefGoogle Scholar
  10. 10.
    D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).CrossRefADSGoogle Scholar
  11. 11.
    S. G. Louie, K-M Ho, and M. L. Cohen, Phys. Rev. B19, 1774 TT979).Google Scholar
  12. 12.
    A, B, C denote graphite layer stacking, while α, β, γ denote intercalant layer stacking. Intercalant layers form a \(\sqrt 3 \,x\,\sqrt 3\) lattice with respect to the graphite layers. The separation between graphite layers surrounding an intercalant layer was chosen to be that of the first and second stage compounds, D. Guerard and A. Herold, Carbon 13, 337 (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. A. Safran
    • 1
  • N. A. W. Holzwarth
    • 1
  • D. R. Hamann
    • 2
  1. 1.Corporate Research-Science LaboratoriesExxon Research and Engineering CompanyLindenUSA
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations