Dynamics of Molecular Recognition in Enzyme-Catalyzed Reactions

  • E. Neumann
Part of the Colloquium der Gesellschaft für Biologische Chemie 23.–25. April 1981 in Mosbach/Baden book series (MOSBACH, volume 32)


The initial chemical reaction step of a large number of complicated processes in living organisms is the association of a low molecular weight ligand to a specific macromolecular binding site. Among the examples for this observation we find substrate enzyme and hormone receptor reactions as well as metal ion activation of proteins and other functionally important biomacromolecular processes. Frequently, the ligand-binding phase is described in anthropomorphic terms such as recognition, discrimination and selection. The meaningful use of these words is, however, limited if more than just binding is to be expressed.


Enzyme Catalysis Charge Number Reaction Partner Diffusional Approach Association Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eigen M (1954) Phys Chem NF 1: 176–200CrossRefGoogle Scholar
  2. 2.
    Neumann E, Nolte H-J (1981) Bioelectrochem Bioenerg 8: 89–101CrossRefGoogle Scholar
  3. 3.
    Guggenheim EA (1967) Thermodynamics, 5th ed., North-Holland Pubi Co AmsterdamGoogle Scholar
  4. 4.
    Smoluchowski Mv (1916) Physik Z 17: 557–585; Z Phys Chem 92: 129 (1927)Google Scholar
  5. 5.
    Hammes GG, Alberty RA (1959) J Phys Chem 63: 274–27 9CrossRefGoogle Scholar
  6. 6.
    Debye P (1942) Trans Electrochem Soc 82: 265–272CrossRefGoogle Scholar
  7. 7.
    Eigen M (1974) in: Quantum statistical mechanics in the natural sciences, eds. Mintz S L, Widmayer SM, Plenum Press, New York pp. 37–61Google Scholar
  8. 8.
    Nolte H-J, Rosenberry TL, Neumann E (1980) Biochemistry 19: 3705–3711PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenberry TL, Neumann E (1977) Biochemistry 16: 3870–3978PubMedCrossRefGoogle Scholar
  10. 10.
    Eigen M, Kruse W, Maass G, DeMayer L (1964) Progress in reaction kinetics 2: 287–318Google Scholar
  11. 11.
    Hammes GG, Schimmel PR (1971) Enzymes, 3rd 2: 67–114CrossRefGoogle Scholar
  12. 12.
    Neumann E, Rosenberry TL, Chang HW (1978) in: Neuronal information transfer, eds. Karlin A, Academic Press, New York pp. 183–210Google Scholar
  13. 13.
    Neumann E, Chang HW (1976) Proc Natl Acad Sci USA 73: 3994–3998PubMedCrossRefGoogle Scholar
  14. 14.
    Neumann E (1980) Neurochemistry Intern. 2: 27–43CrossRefGoogle Scholar
  15. 15.
    Sheridan RZ, Lester HA (1977) J Gen Physiol 70: 187–219PubMedGoogle Scholar
  16. 16.
    Barrantes FJ (1978) J Mol Biol 124: 1–26PubMedCrossRefGoogle Scholar
  17. 17.
    Jürss R, Prinz H, Maelicke A (1979) Proc Natl Acad Sci USA 76: 1064–1068PubMedCrossRefGoogle Scholar
  18. 18.
    Heidmann T, Changeux JP (1979) Eur J Biochem 94: 255–279 (1979)PubMedGoogle Scholar
  19. 19.
    Koshland DE Jr. (1958) Proc Natl Acad Sci USA 44: 98–106PubMedCrossRefGoogle Scholar
  20. 20.
    Neumann E, Nolte H-J (1980) Studia Biophys 81: 109–110Google Scholar
  21. 21.
    Chock PB, Eggers F, Eigen M, Winkler-Oswatitsch R (1977) Biophys Chem 6: 239–251PubMedCrossRefGoogle Scholar
  22. 22.
    Nolte H-J, Neumann E (1979) Biophys Chem 10: 253–260PubMedCrossRefGoogle Scholar
  23. 22.
    Bode W (1979) Mol Biol 127: 357–374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • E. Neumann
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsried/MünchenGermany

Personalised recommendations