Skip to main content

Computation of the Yang-Lee Edge Singularity in Ising Models

  • Conference paper
Numerical Methods in the Study of Critical Phenomena

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 9))

  • 207 Accesses

Abstract

In 1952, Yang and Lee [1] established the link between the occurence of phase transition, and the location of zeroes of the partition function in the complex plane of a suitable activity variable. Lee and Yang [2] analyzed the location of zeroes for the lattice gaz as well as for the ferromagnetic spin one half Ising model. In the thermodynamic (large volume) limit these zeroes will become dense and form a cut in the complex plane. When the temperature is larger than the critical one, this cut ends up into a pair of singularities, which move with the temperature. The critical singularity is generated by the meeting of these two singularities (and possibly others). Nothing is known exactly about the nature of the singularities for the well-known Ising model in more than one dimension. This lack of knowledge indicates that a global understanding of the critical point in the two variables, temperature and magnetic field (or order parameter) has not yet been achieved. Our purpose is to recall the various attempts which have been made in this direction, and also to show why the problem is particularly hard. Although we shall see that these singularities occur for a pure imaginary field and therefore look highly unphysical, we think that the understanding of these singularities remains a challenge for physicists working in statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.N. Yang and T.D. Lee, Phys. Rev., 87, 404 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. T.D. Lee and C.N. Yang, Phys. Rev., 87, 410 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. D. Bessis, J.M. Drouffe and P. Moussa, J. Phys.A: Math. Gen., 9, 2105 (1976).

    Article  ADS  Google Scholar 

  4. M.E. Fisher, Rep. Prog. Phys., 30, 615 (1967).

    Article  ADS  Google Scholar 

  5. R.B. Griffiths, J. Math. Phys., 10, 1559 (1969).

    Article  ADS  Google Scholar 

  6. M. Suzuki and M.E. Fisher, J. Math. Phys., 12, 235 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Ruelle, Phys. Rev. Letters, 26, 303 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Ruelle, Commun. Math. Phys., 31, 265 (1973).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. T. Asano, Phys. Rev. Letters, 24, 1409 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Dunlop and C.M. Newman, Commun. Math. Phys., 44, 223 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  11. C.M. Newman, J. Stat. Phys., 15, 399 (1976).

    Article  ADS  Google Scholar 

  12. D.A. Kurtze, Ph D. Thesis, Cornell University (1980), MSC report N°4184 (1979).

    Google Scholar 

  13. P.J. Kortman and R.B. Griffiths, Phys. Rev. Lett., 27, 1439 (1971).

    Article  ADS  Google Scholar 

  14. D.A. Kurtze and M.E. Fisher, J. Stat. Phys., 19, 205 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. G.A. Baker, M.E. Fisher and P. Moussa, Phys. Rev. Lett., 42, 615 (1979).

    Article  ADS  Google Scholar 

  16. D.A. Kurtze and M.E. Fisher, Phys. Rev.B, 20, 2785 (1979).

    Article  ADS  Google Scholar 

  17. G.A. Baker and P. Moussa, J. Appl. Phys., 49, 1360 (1978).

    Article  ADS  Google Scholar 

  18. D.S. Gaunt, Phys. Rev., 179, 174 (1969).

    Article  ADS  Google Scholar 

  19. D.S. Gaunt and A.J. Guttmann, in “Phase Transitions and Critical Phenomena”, Academic Press, New York (1974), Vol.3, p.181.

    Google Scholar 

  20. M.E. Fisher, Phys. Rev. Lett., 40, 1610 (1978).

    Article  ADS  Google Scholar 

  21. K. Uzelac, P. Pfeuty and R. Jullien, Phys. Rev. Lett., 43, 805 (1979).

    Article  ADS  Google Scholar 

  22. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).

    Article  MATH  ADS  Google Scholar 

  23. K. Uzelac, R. Jullien and P. Pfeuty, Phys. Rev.B, Vol.22 (1980) in press.

    Google Scholar 

  24. K. Uzelac et al, Communication to this conference.

    Google Scholar 

  25. M.F. Barnsley, D. Bessis and P. Moussa, J. Math. Phys., 20, 535 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moussa, P. (1981). Computation of the Yang-Lee Edge Singularity in Ising Models. In: Della Dora, J., Demongeot, J., Lacolle, B. (eds) Numerical Methods in the Study of Critical Phenomena. Springer Series in Synergetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81703-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81703-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81705-2

  • Online ISBN: 978-3-642-81703-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics