Advertisement

Exciton Dynamics in Quasi-One-Dimensional Molecular Systems

  • Ahmed H. Zewail
  • Duane D. Smith
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 23)

Abstract

Quasi-one-dimensional systems offer great challenges to theoreticians as well as experimentalists. Because of the low dimensionality one expects the dynamics of excitation (electron) transfer in these systems to be relatively simple when compared with the dynamics of higher-dimensionality solids. In fact, if one is really optimistic, we may anticipate the use of 1-D physics formulaes, found in most text books, to explain experimental findings. However, the problem is not that simple and indeed it requires much more understanding than that presented in standard textbooks. Two interesting questions are relevant here: First, do 1-D systems exist? Second, if they exist, what determines the dynamics in such prototypical systems?

Keywords

Trap Depth Energy Transfer Rate Exciton Band Mobility Edge Triplet Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Frenkel, Phys. Rev. 37, 17 (1931)CrossRefMATHADSGoogle Scholar
  2. 1a.
    J. Frenkel, Phys. Rev.37, 276 (1931).CrossRefADSGoogle Scholar
  3. 2.
    A. S. Davydov, Theory of Molecular Excitons, (Plenum Press, New York, 1971).Google Scholar
  4. 3.
    R. M. Hochstrasser and J. D. Whiteman, J. Chem. Phys. 56, 5945 (1972).CrossRefADSGoogle Scholar
  5. 4.
    R. M. Hochstrasser and A. H. Zewail, Chem. Phys. 4, 142 (1974).CrossRefGoogle Scholar
  6. 5.
    R. Schmidberger and H. C. Wolf, Chem. Phys. Lett 16, 402 (1972)CrossRefADSGoogle Scholar
  7. 5a.
    R. Schmidberger and H. C. Wolf Chem. Phys. Lett. 25, 185 (1974)CrossRefADSGoogle Scholar
  8. 5b.
    R. Schmidberger and H. C. WolfChem. Phys. Lett. 32, 21 (1975).CrossRefADSGoogle Scholar
  9. 6.
    R. M. Hochstrasser, L. W. Johnson, and C. M. Klimcak, J. Chem. Phys. 73, 156 (1980).CrossRefADSGoogle Scholar
  10. 7.
    T. E. Orlowski and A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).CrossRefADSGoogle Scholar
  11. 8.
    D. Burland and A. H. Zewail in, Advances in Chemical Physics, eds. I. Prigogine and S. A. Rice (John Wiley & Sons, 1979) Vol. 40, p. 369.CrossRefGoogle Scholar
  12. 9.
    G. Castro and R. M. Hochstrasser, J. Chem. Phys. 48, 637 (1968).CrossRefADSGoogle Scholar
  13. 10.
    D. D. Smith and A. H. Zewail, J. Chem. Phys. 71, 3533 (1979).CrossRefADSGoogle Scholar
  14. 11.
    R. Silbey, Ann. Rev. Phys. Chem. 27, 203 (1976) and references therein.CrossRefADSGoogle Scholar
  15. 12.
    D.D. Smith, R. C. Powell, and A. H. Zewail, Chem. Phys. Lett. 68, 309 (1979).CrossRefADSGoogle Scholar
  16. 13.
    D. D. Smith, D. P. Miliar, and A. H. Zewail, J. Chem. Phys. 72, 1187 (1980).CrossRefADSGoogle Scholar
  17. 14.
    J. Bernasconi, S. Alexander, and R. Orbach, Phys. Rev. Lett. 41, 185 (1978)CrossRefADSGoogle Scholar
  18. 14a.
    J. Bernasconi, S. Alexander, and R. OrbachJ. Physique Colloque C6, Supp. an n°8, p. C6–706; D. D. Smith and A. H. Zewail (to be published).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Ahmed H. Zewail
    • 1
  • Duane D. Smith
    • 1
  1. 1.Arthur Amos Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations