Preferential Vulnerability of Dendrites to Lithium Ion in Rat Brain and in Nerve Cell Culture

  • Zoltan Janka
  • I. Szentistvanyi
  • A. Juhasz
  • E. Kiraly
  • A. Parducz
  • F. Joo
Part of the Acta Neuropathologica Supplementum book series (NEUROPATHOLOGIC, volume 7)

Summary

Preferential swelling and vacuolation of dendrites were observed electron microscopically in different brain regions of rats treated with LiCl in a dose of 6–18 mmol/kg for 1–6 days. The most severe fine structural changes were revealed in the hippocampus. Low-dose (0.33 mmol/kg) lithium treatment lasting for a year did not cause any morphologically detectable alterations in the rat brain. In vitro studies showed a reduction of den-dro-axonal process network of neurons measured by morphometric means after lithium exposure. Using different cultures of neuronal and glial cell populations, higher lithium uptake was observed for neuron-enriched cultures.

Key words

lithium dendrites cell culture electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akai K, Roizin L, Liu JC (1977) Ultrastructural findings of the central nervous system in lithium neurotoxicology. In Roizin L, Shiraki H, Grcevic N (eds) Neurotoxicology, Raven Press, New York, pp 185–203Google Scholar
  2. 2.
    Cornog JL, Gonatas NK, Feierman JR (1967) Effects of intracerebral injection of ouabain on the fine structure of rat cerebral cortex. Am J Pathol 51:573PubMedGoogle Scholar
  3. 3.
    Ebadi MS, Simmons VJ, Hendrickson MJ, Lacy PS (1974) Pharmacokinetics of lithium and its regional distribution in rat brain. Eur J Pharmacol Toxicol 27:324–329Google Scholar
  4. 4.
    Edelfors S (1975) Distribution of sodium, potassium and lithium in the brain of lithiumtreated rats. Acta Pharmacol Toxicol (Copenh) 37:387–392CrossRefGoogle Scholar
  5. 5.
    Janka Z, Latzkovits L, Joo F, Szentistvanyi I (1979) Cell-to-cell contacts in primary cultures of dissociated chicken embryonic brain. Cell Tissue Res 199:153–157PubMedCrossRefGoogle Scholar
  6. 6.
    Janka Z, Szentistvanyi I, Juhasz A, Rimanoczy A (in press) Lithium transport difference between neuron and glia in primary culture. NeuropharmacologyGoogle Scholar
  7. 7.
    Johnson FN, Johnson S (eds) (1978) Lithium in medical practice. MTP Press, LancasterGoogle Scholar
  8. 8.
    Kropf D, Müller-Oerlinghausen B (1979) Changes in learning, memory, and mood during lithium treatment. Acta Psychiatr Scand 59:97–124PubMedCrossRefGoogle Scholar
  9. 9.
    Lampert PW, Gajdusek DC, Gibbs CJ Jr (1975) Pathology of dendrites in subacute spongiform virus encephalopathies. In Kreutzberg W (ed) Advances in Neurology. Raven Press, New York, pp 465–470Google Scholar
  10. 10.
    Latzkovits L, Sensenbrenner M, Mandel P (1974) Tracer kinetic model analysis of potassium uptake by dissociated nerve cell cultures: glial-neuronal interrelationship. J Neurochem 23:193–200PubMedCrossRefGoogle Scholar
  11. 11.
    Olney JW, Fuller T, De Gubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100PubMedCrossRefGoogle Scholar
  12. 12.
    Paula Barbosa MM, Ruela C, Faria R, Cruz C (1980) Cerebral cortex dendritic degeneration in subacute sclerosing panencephalitis (SSPE). Neurology (Minneap) 30:7–11Google Scholar
  13. 13.
    Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186:1126–1128PubMedCrossRefGoogle Scholar
  14. 14.
    Reisberg B, Gershon S (1979) Side effects associated with lithium therapy. Arch Gen Psychiatry 36:879–887PubMedCrossRefGoogle Scholar
  15. 15.
    Roizin L, Akai K, Lawler HC, Liu JC (1971) Lithium neurotoxicity effects. II. Electron microscope investigations. J Neuropathol Exp Neurol 30:142–143PubMedGoogle Scholar
  16. 16.
    Schlote W, Betz E, Nguyen-Duong H (1975) Reversible apical swelling of dendrites in the cerebral cortex of cats during respiratory acidosis. Adv Neurol, pp. 483–495Google Scholar
  17. 17.
    Sensenbrenner M (1978) Dissociated brain cells in primary cultures. In Fedoroff S, Hertz L (eds) Cell Tissue and Organ Cultures in Neurobiology. Academic Press, New York, pp 191–213Google Scholar
  18. 18.
    Szentistvanyi I, Janka Z, Joo F, Rimanoczy A, Juhasz A, Latzkovits L (1979) Na-dependent Li-transport in primary nerve cell cultures. Neurosci Lett 13:157–161PubMedCrossRefGoogle Scholar
  19. 19.
    Szentistvanyi I, Janka Z, Rimanoczy A, Latzkovits L, Junasz A (1979) Comparison of lithium and sodium transports in primary cultures of dissociated brain cells. Cell Mol Biol 25:315–321Google Scholar
  20. 20.
    Thellier M, Wissocq JC, Heurteaux C (1980) Quantitative microlocation of lithium in the brain by a (n, a) nuclear reaction. Nature 283:299–302PubMedCrossRefGoogle Scholar
  21. 21.
    Whetsell WO Jr, Mire JJ (1970) Cytoplasmic vacuole formation in cultured neurons treated with lithium ions. Brain Res 19:155–159PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1981

Authors and Affiliations

  • Zoltan Janka
    • 1
  • I. Szentistvanyi
    • 2
  • A. Juhasz
    • 2
  • E. Kiraly
    • 3
  • A. Parducz
    • 4
  • F. Joo
    • 4
  1. 1.Department of Neurology and PsychiatryUniversity Medical School, SzegedSzegedHungary
  2. 2.Department of Neurology and PsychiatrySzegedHungary
  3. 3.Department of AnatomyUniversity Medical SchoolSzegedHungary
  4. 4.Laboratory of Molecular Neurobiology, Institute of BiophysicsBiological Research CenterSzegedHungary

Personalised recommendations