Absorption and Circular Dichroism Spectroscopies

  • M. M. Long
  • D. W. Urry
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 31)


The obtaining of absorption and circular dichroism spectra of a suspension of biological membranes is a relatively simple and quick procedure. Extracting correct and meaningful information from these spectra is not so simple and quick. In this chapter an effort will be made stepwise to present the problem of the application to the study of biomembranes of the physical methods of ultraviolet absorption and circular dichroism spectroscopies. This will be approached by first considering solutions, the phenomena that occur and type of information that is available in solution. Next will be considered suspensions of homogeneous particles and how to improve their distorted spectra, and finally the added complication of suspensions of heterogeneous particles (biomembranes) will be noted by presenting data on the three major sources of membrane absorption (lipids, protein side chains, and protein backbone) in several biomembranes and carrying out approximate corrections on experimental ellipticities.


Circular Dichroism Circular Dichroism Spectrum Transition Dipole Moment Circular Dichroism Spectroscopy Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barman, T.E., Koshland, D.E.: A colorimetric procedure for the quantitative determination of tryptophan residues in proteins. J. Biol. Chem. 242, 5771–5776 (1967).PubMedGoogle Scholar
  2. Bartlett, G.R.: Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–471 (1959).PubMedGoogle Scholar
  3. Blaurock, A.E.: Bacteriorhodopsin: Transmembrane pump containing α-helix. J. Mol. Biol. 93, 139–158 (1975).PubMedCrossRefGoogle Scholar
  4. Davydov, A.S.: Theory of Molecular Excitons (translated by Kasha, M., Oppenheimer, M., Jr.) New York: McGraw-Hill 1962.Google Scholar
  5. Dodge, J.T., Mitchell, C., Hanahan, D.J.: The preparation and chemical characteristics of haemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100, 119–130 (1963).PubMedCrossRefGoogle Scholar
  6. Duysens, L.N.M.: The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19, 1–12 (1956).PubMedCrossRefGoogle Scholar
  7. Fiske, C.H., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).Google Scholar
  8. Gordon, D.J.: Mie scattering by optically active particles. Biochemistry 11, 413–420 (1972).PubMedCrossRefGoogle Scholar
  9. Gordon, D.J., Holzwarth, G.: Artifacts in the measured optical activity of membrane suspensions. Arch. Biochem. Biophys. 142, 481–488 (1971).PubMedCrossRefGoogle Scholar
  10. Gratzer, W.B., Holzwarth, G.M., Doty, P.: Polarization of the ultraviolet absorption bands in α-helical polypeptides. Proc. Natl. Acad. Sci. USA 47, 1785–1795 (1961).PubMedCrossRefGoogle Scholar
  11. Henderson, R.: The structure of the purple membrane from Halobacterium halobium: Analysis of the X-ray diffraction pattern. J. Mol. Biol. 93, 123–138 (1975).PubMedCrossRefGoogle Scholar
  12. Henderson, R., Unwin, P.N.: Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).PubMedCrossRefGoogle Scholar
  13. Holzwarth, G., Doty, P.: The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 87, 218–228 (1965).PubMedCrossRefGoogle Scholar
  14. Kasha, M.: Energy transfer mechanisms and the molecular excitor model for molecular aggregates. Radial Res. 20, 55–71 (1963).CrossRefGoogle Scholar
  15. Kasha, M., El-Bayoumi, A., Rhodes, W.: Excited states of nitrogen base-pairs and polynucleotides. J. Chem. Phys. 58, 916–925 (1961).Google Scholar
  16. Long, M.M., Urry, D.W., Ohnishi, T.: Circular dichroism of repeat pentapeptide of elastin. Int. Res. Commun. Syst. 2, 1352 (1974).Google Scholar
  17. Long, M.M., Urry, D.W., Stoeckenius, W.: Circular dichroism of biological membranes: purple membrane of Halobacterium halobium. Biochem. Biophys. Res. Commun. 75, 725–731 (1977).PubMedCrossRefGoogle Scholar
  18. Lowry, O.H., Rosenbrough, N.L., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent J. Biol. Chem. 193, 255–275 (1951).Google Scholar
  19. Martonosi, A., Halpin, R.A.: X. The protein composition of sarcoplasmic reticulum membranes. Arch. Biochem. Biophys. 144, 66–77 (1971).PubMedCrossRefGoogle Scholar
  20. Miles, D.W., Urry, D.W., Reciprocal relations in the circular dichroism of adenosine mononicotinate. J. Phys. Chem. 71, 4448–4454 (1967).PubMedCrossRefGoogle Scholar
  21. Moffitt, W.: Optical Rotatory dispersion of helical polymers. J. Chem. Phys. 25, 467–478 (1956a).CrossRefGoogle Scholar
  22. Moffitt, W.: The optical rotatory dispersion of simple polypeptides. Proc. Natl. Acad. Sci. USA 42, 736–746 (1956b).PubMedCrossRefGoogle Scholar
  23. Moscowitz, A.: Optical Rotatory Dispersion. (ed. Djerassi, C.) pp. 150–177. New York: McGraw-Hill 1960.Google Scholar
  24. Nakao, T., Tashima, Y., Nagano, K., Nakao, M.: Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem. Biophys. Res. Commun. 19, 775–788 (1965).CrossRefGoogle Scholar
  25. Ooi, T., Scott, R.A., Vanderkooi, G., Scheraga, H.A.: Conformational analysis of macromolecules. IV. Helical structures of poly-1-alanine, poly-1-valine, poly-β-methyl-l-aspartate, poly-γ-methyl-1-glutamate and poly-1-tyrosine. J. Chem. Phys. 46, 4410–4416 (1967).PubMedCrossRefGoogle Scholar
  26. Quadrifoglio, F., Urry, D.W.: Ultraviolet rotatory properties of polypeptide in solution. I. Helical poly-L-alanine. J. Am. Chem. Soc. 90, 2755–2760 (1968a).PubMedCrossRefGoogle Scholar
  27. Quadrifoglio, F., Urry, D.W.: Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine. J. Am. Chem. Soc. 90, 2760–2765 (1968b).PubMedCrossRefGoogle Scholar
  28. Rhodes, W.: The hypochromism and other spectral properties of helical polynucleotides. J. Am. Chem. Soc. 83, 3609–3617 (1961).CrossRefGoogle Scholar
  29. Rosenberg, S.A., Guidotti, G.: The protein of human erythrocyte membranes. I. Preparation, solubilization and practical characterization. J. Biol. Chem. 243, 1985–1992 (1968).PubMedGoogle Scholar
  30. Seraydarian, K., Mommaertz, W.F.H.M.: Density gradient separation of sarcotubular vesicles and other particulate constituents of rabbit muscle. J. Cell. Biol. 26, 641–656 (1965).PubMedCrossRefGoogle Scholar
  31. Sober, H.A. (ed.), in: Handbook of Biochemistry B-73. Cleveland, Ohio: The Chemical Rubber Company 1970.Google Scholar
  32. Starcher, B.C.: A modified two-column procedure for the analysis of the basic amino acids found in elastin, collagen and antibiotics. J. Chromatogr. 38, 293–295 (1968).PubMedCrossRefGoogle Scholar
  33. Tinoco, I., Jr.: Hypochromism in polynucleotides. J. Am. Chem. Soc. 82, 4785–4790 (1960)CrossRefGoogle Scholar
  34. Tinoco, I., Jr.Optical and other electronic properties of polymers. J. Chem. Phys. 34, 1067 (1961).CrossRefGoogle Scholar
  35. Tinoco, I., Jr.: Theoretical aspects of optical activity. Part 2: Polymers. Adv. Chem. Phys. 4, 113–160 (1962).CrossRefGoogle Scholar
  36. Tomimatsu, Y., Vitello, L., Gaffield, W.: Effect of aggregation on the optical rotatory dispersion of poly(α, L-Glutamic Acid). Biopolymers 4, 653–662 (1966).CrossRefGoogle Scholar
  37. Unwin, P.N., Henderson, R.: Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975).PubMedCrossRefGoogle Scholar
  38. Urry, D.W.: Protein-heme interactions in heme proteins: Cytochrome C. Proc. Natl. Acad. Sci. USA 54, 640–648 (1965).PubMedCrossRefGoogle Scholar
  39. Urry, D.W.: Optical rotation. Annu. Rev. Phys. Chem. 19, 477–530 (1968).CrossRefGoogle Scholar
  40. Urry, D.W.: Spectroscopic Approaches to Biomolecular Conformation (ed. Urry, D.W.), pp. 33–121. Chicago, Ill.: American Medical Association Press 1970.Google Scholar
  41. Urry, D.W.: Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. Biophys. Acta Biomembr. Rev. 265, 115–168 (1972).Google Scholar
  42. Urry, D.W.: Determining biomolecular conformations. IV. Circular dichroism. Res. Dev. 25(1), 20–24 (1974).Google Scholar
  43. Urry, D.W., Long, M.M.: Methods in Membrane Biology (ed. Korn, E.D.), Vol. 1, pp. 105–141. New York: Plenum Press 1974.Google Scholar
  44. Urry, D.W., Long, M.M.: Conformations of the repeat peptides of elastin in solution. CRC Crit. Rev. Biochem. 4, 1–45 (1976).PubMedCrossRefGoogle Scholar
  45. Urry, D.W., Long, M.M.: Ultraviolet absorption. Circular Dichroism, and optical toratory dispersion in biomembrane studies. In: Physiology of Membrane Disorders (eds. Andreoli, T.E., Hoffman, J.F., Fanestil, D.D.), pp. 107–124. New York: Plenum Press 1978.CrossRefGoogle Scholar
  46. Urry, D.W., Ohnishi, M.: Spectroscopic approaches to biomolecular conformation (ed. Urry, D.W.), pp. 263–300. Chicago, lll.: American Medical Association Press 1970.Google Scholar
  47. Urry, D.W., Hinners, T.A., Masotti, L.: Calculation of distorted circular dichroism curves for poly-L-glutamic acid suspensions. Arch. Biochem. Biophys. 137, 214–221 (1970).PubMedCrossRefGoogle Scholar
  48. Urry, D.W., Long, M.M., Ohnishi, T., Jacobs, M.: Circular dichroism and absorption of the polytetra-peptide of elastin: A polymer model for the β-turn. Biochem. Biophys. Res. Commun. 61, 1427–1433 (1974)..PubMedCrossRefGoogle Scholar
  49. Urry, D.W., Long, M.M., Jacobs, M., Harris, R.D.: Conformation and molecular mechanisms of carriers and channels. Ann. N.Y. Acad. Sci. 264, 203–220 (1976).CrossRefGoogle Scholar
  50. Velluz, L., Legrand, M., Grosjean, M.: Optical Circular Dichroism Principles, Measurements and Applications, p. 21. New York: Academic Press 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • M. M. Long
    • 1
  • D. W. Urry
    • 1
  1. 1.Laboratory of Molecular Biophysics and the Cardiovascular Research and Training Center University of Alabama Medical CenterBirminghamUSA

Personalised recommendations