Advertisement

The Stability of Inverse Problems

Chapter
Part of the Topics in Current Physics book series (TCPHY, volume 20)

Abstract

Many inverse problems arising in optics and other fields like geophysics, medical diagnostics and remote sensing, present numerical instability: the noise affecting the data may produce arbitrarily large errors in the solutions. In other words, these problems are ill-posed in the sense of Hadamard.

Keywords

Inverse Problem Analytic Continuation Constraint Operator Regularization Theory Admissible Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    J. Hadamard: Lectures on the Cauchy Problem in Linear Partial Differential Equations ( Yale University Press, New Haven 1923 )Google Scholar
  2. 5.2
    R. Courant, D. Hilbert: Methods of Mathematical Physics, Vol. 2 (Interscience,New York 1962 )Google Scholar
  3. 5.3
    M.M. Lavrentiev: Some Improperly Posed Problems of Mathematical Physics,Springer Tracts in Natural Philosophy, Vol. 11 ( Springer, Berlin, Heidelberg,New York 1967 )Google Scholar
  4. 5.4
    A. Tikhonov, V. Arsenine: Méthodes de Résolution de Problèmes Mal Posés (Mir, Moscow 1976 )Google Scholar
  5. 5.5
    L.E. Payne: Improperly Posed Problems in Partial Differential Equations (SIAM, Philadelphia 1975 )Google Scholar
  6. 5.6
    S.G. Mikhlin: Integral Equations ( Pergamon, London 1957 )zbMATHGoogle Scholar
  7. 5.7
    A.V. Balakrishnan: Applied Functional Analysis, Applications of Mathematics,Vol. 3 ( Springer, Berlin, Heidelberg, New York 1976 )Google Scholar
  8. 5.8
    K. Chadan, P.C. Sabatier: Inverse Problems in Quantum Scattering Theory (Springer Berlin, Heidelberg, New York 1977 )Google Scholar
  9. 5.9
    H.P. Baltes (ed.): Inverse Source Problems in Optics, Topics in Current Physics, Vol. 9 ( Springer, Berlin, Heidelberg, New York 1978 )Google Scholar
  10. 5.10
    M. Reed, B. Simon: Methods of Modern Mathematical Physics (Academic Press,New York 1972 )Google Scholar
  11. 5.11
    P.C. Sabatier (ed.): Applied Inverse Problems, Lecture Notes in Physics, Vol.85 (Springer, Berlin, Heidelberg, New York 1978 )zbMATHGoogle Scholar
  12. 5.12
    M.Z. Nashed (ed.): Generalized Inverses and Applications ( Academic Press, NewYork 1976 )zbMATHGoogle Scholar
  13. 5.13
    A.N. Tikhonov: Sov. Math. Dokl. 4, 1035–1038 (1963)Google Scholar
  14. 5.14
    F. John: Commun. Pure Appl. Math. 13, 551–585 (1960)zbMATHGoogle Scholar
  15. 5.15
    C. Pucci: Atti Accad. Naz. Lincei 18, 473–477 (1955)zbMATHMathSciNetGoogle Scholar
  16. 5.16
    K. Miller: SIAM J. Math. Anal. 1, 52–74 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 5.17
    K. Miller, G.A. Viano: J. Math. Phys. 14, 1037–1048 (1973)zbMATHADSMathSciNetCrossRefGoogle Scholar
  18. 5.18
    V.F. Turchin, V.P. Kozlov, M.S. Malkevich: Sov. Phys.-Usp. 13, 681–703 (1971)ADSCrossRefGoogle Scholar
  19. 5.19
    V.A. Morozov: U.S.S.R. Comp. Math. and Math. Phys. 10, N. 4, 10–25 (1970)Google Scholar
  20. 5.20
    J.N. Franklin: J. Math. Anal. Appl. 31, 682–716 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 5.21
    M. Bertero, G.A. Viano: Bollettino U.M.I. 15-B, 483–508 (1978)Google Scholar
  22. 5.22
    M. Bertero, C. De Mol, G.A. Viano: J. Math. Phys. 20, 509–521 (1979)ADSMathSciNetCrossRefGoogle Scholar
  23. 5.23
    E.C. Titchmarsh: The Theory of Functions (Oxford University Press, Oxford 1939 )Google Scholar
  24. 5.24
    E. Hille, J.D. Tamarkin: Acta Math. 57, 1–76 (1931)MathSciNetCrossRefGoogle Scholar
  25. 5.25
    G. Talenti: Bollettino U.M.I. 15-A, 1–29 (1978)zbMATHMathSciNetGoogle Scholar
  26. 5.26
    M. Bertero, C. De Mol, G.A. Viano: Opt. Acta 27, 307–320 (1980)ADSCrossRefGoogle Scholar
  27. 5.27
    E. Picard: R.C. Mat. Palermo 29, 615–619 (1910)Google Scholar
  28. 5.28
    T. Kato: Perturbation Theory for Linear Operators (Springer, Berlin, Heidelberg,New York 1966 )Google Scholar
  29. 5.29
    S. Twomey: J. Franklin Inst. 279, 95–109 (1965)MathSciNetCrossRefGoogle Scholar
  30. 5.30
    V.A. Morozov: Sov. Math. Dokl. 8, 1000–1003 (1967)zbMATHGoogle Scholar
  31. 5.31
    J.N. Franklin: Math. Comp. 28, 889–907 (1974)zbMATHMathSciNetGoogle Scholar
  32. 5.32
    D.L. Phillips: J. ACM 9, 84–96 (1962)zbMATHCrossRefGoogle Scholar
  33. 5.33
    S. Twomey: J. ACM 10, 97–101 (1963)zbMATHCrossRefGoogle Scholar
  34. 5.34
    L. Eldén: Ph. D. Thesis, Linköping University (1977)Google Scholar
  35. 5.35
    G.F. Miller: “Fredholm Equations of the First Kind”, in Numerical Solution of Integral Equations, ed. by L.M. Delves, J. Walsh ( Claredon Press, Oxford 1974 ) pp. 175–188Google Scholar
  36. 5.36
    M. Bertero, C. De Mol, G.A. Viano: “On the Regularization of Linear Inverse Problems in Optics”, in Applied Inverse Problems, ed. by P.C. Sabatier, Lecture Notes in Physics, Vol. 85 ( Springer, Berlin, Heidelberg, New York 1978 ) pp. 18O - 199Google Scholar
  37. 5.37
    G. Backus, F. Gilbert: Geophys. J. R. Astron. Soc. 16, 169–205 (1968)zbMATHADSGoogle Scholar
  38. 5.38
    G. Backus, F. Gilbert: Phil. Trans. Roy. Soc. A-266, 123–192 (1970)Google Scholar
  39. 5.39
    J.L. Doob: Stochastic Processes ( Wiley, New York 1953 )zbMATHGoogle Scholar
  40. 5.40
    L.E. Franks: Signal Theory ( Prentice-Hall, Englewood Cliffs 1969 )zbMATHGoogle Scholar
  41. 5.41
    A. Papoulis: Probability, Random Variables and Stochastic Processes ( McGraw-Hill, New York 1965 )zbMATHGoogle Scholar
  42. 5.42
    G.E. Backus: “Inference from Inadequate and Inaccurate Data”, in Mathematical. Problems in the Geophysical Sciences, ed. by W.H. Reid, Lectures in Applied Math., Vol 14 ( AMS, Providence 1971 )Google Scholar
  43. 5.43
    I.M. Gel’fand, N.Y. Vilenkin: Generalized Functions, Vol. 4 ( Academic Press, New York 1964 )Google Scholar
  44. 5.44
    I.M. Gel’fand, A.M. Yaglom: Am. Math. Soc. Trans. 12, 199–246 (1959)Google Scholar
  45. 5.45
    W.M. Boerner: “Polarization Utilization in Electromagnetic Inverse Scattering”; Communications Laboratory Rpt. 78–3, University of Illinois at Chicago Circle (1978)Google Scholar
  46. 5.46
    H. Wolter: “On Basic Analogies and Principal Differences between Optical and Electronic Information”, in Progress in Optics, Vol. I, ed. by E. Wolf (North Holland, Amsterdam 1961 ) pp. 155–210Google Scholar
  47. 5.47
    R.N. Bracewell, J.A. Roberts: Aust. J. Phys. 7, 615–640 (1954)ADSCrossRefGoogle Scholar
  48. 5.48
    Y.T. Lo: J. Appl. Phys. 32, 2052–2054 (1961)ADSCrossRefGoogle Scholar
  49. 5.49
    H. Wolter: Physica 24, 457–475 (1958)zbMATHADSMathSciNetCrossRefGoogle Scholar
  50. 5.50
    B.J. Hoenders, H.A. Ferwerda: Optik 37, 542–556 (1973)Google Scholar
  51. 5.51
    C. Shannon: The Mathematical Theory of Communication ( University of Illinois Press, Urbana 1949 )zbMATHGoogle Scholar
  52. 5.52
    D. Gabor: “Light and Information”, in Astronomical Optics and Related Subjects, ed. by Z. Kopal ( North-Holland, Amsterdam 1956 ) pp. 17–30Google Scholar
  53. 5.53
    G. Toraldo di Francia: J. Opt. Soc. Am. 59, 799–804 (1969)ADSCrossRefGoogle Scholar
  54. 5.54
    D. Slepian, H.O. Pollack: Bell System Tech. J. 40, 43–63 (1961)zbMATHGoogle Scholar
  55. 5.55
    D. Slepian: J. Math. & Phys. 44, 99–140 (1965)zbMATHMathSciNetGoogle Scholar
  56. 5.56
    D. Slepian, E. Sonnenblick: Bell Syst. Tech. J. 44, 1745–1759 (1965)zbMATHMathSciNetGoogle Scholar
  57. 5.57
    C. Flammer: Spheroidal Wave Functions ( Stanford University Press, Stanford 1957 )zbMATHGoogle Scholar
  58. 5.58
    H.J. Landau: Trans. Am. Math. Soc. 115, 242–256 (1965)zbMATHCrossRefGoogle Scholar
  59. 5.59
    B.R. Frieden: “Evaluation, Design and Extrapolation Methods for Optical Signals, Based on Use of the Prolate Functions”, in Progress in Optics, Vol. 9, ed. by E. Wolf ( North-Holland, Amsterdam 1971 ) pp. 311–407Google Scholar
  60. 5.60
    F. Gori, G. Guattari: Opt. Commun. 7, 163–165 (1973)ADSCrossRefGoogle Scholar
  61. 5.61
    M. Bertero, C. De Mol, G.A. Viano: Opt. Lett. 3, 51–53 (1978)ADSCrossRefGoogle Scholar
  62. 5.62
    C.W. Helstrom: J. Opt. Soc. Am. 67, 833–838 (1977)ADSCrossRefGoogle Scholar
  63. 5.63
    C.K. Rushforth, R.W. Harris: J. Opt. Soc. Am. 58, 539–545 (1968)ADSCrossRefGoogle Scholar
  64. 5.64
    J.W. Goodman: “Synthetic Aperture Optics”, in Progress in Optics, Vol. 8, ed. by E. Wolf ( North-Holland, Amsterdam 1970 ) pp. 1–50Google Scholar
  65. 5.65
    G. Toraldo di Francia: Riv. Nuovo Cimento 1 (Numero Speciale), 460–484 (1969)Google Scholar
  66. 5.66
    C.W. Helstrom: J. Opt. Soc. Am. 57, 297–303 (1967)ADSCrossRefGoogle Scholar
  67. 5.67
    C.L. Rino: J. Opt. Soc. Am. 59, 547–553 (1969)ADSCrossRefGoogle Scholar
  68. 5.68
    M. Bendinelli, A. Consortini, L. Ronchi, B.R. Frieden: J. Opt. Soc. Am. 64, 1498–1502 (1974)ADSCrossRefGoogle Scholar
  69. 5.69
    H. Dym, H.P. McKean: Fourier Series and Integrals ( Academic Press, New York 1972 )zbMATHGoogle Scholar
  70. 5.70
    G.J. Buck, J.J. Gustincic: IEEE Trans. AP-15, 376–381 (1967)Google Scholar
  71. 5.71
    B.R. Frieden: J. Opt. Soc. Am. 57, 1013–1019 (1967)ADSCrossRefGoogle Scholar
  72. 5.72
    B.R. Frieden: “Image Enhancement and Restoration”, in Picture Processing and Digital Filtering, 2nd ed., ed. by T.S. Huang, Topics in Applied Physics, Vol. 6 ( Springer, Berlin, Heidelberg, New York 1979 ) pp. 177–248Google Scholar
  73. 5.73
    G.A. Viano: J. Math. Phys. 17, 1160–1165 (1976)ADSMathSciNetCrossRefGoogle Scholar
  74. 5.74
    J.R. Shewell, E. Wolf: J. Opt. Soc. Am. 58, 1596–1603 (1968)ADSCrossRefGoogle Scholar
  75. 5.75
    B.J. Hoenders: The Uniqueness of Inverse Problems“, in Inverse Source Problems in Optics, ed. by H.P. Baltes, Topics in Current Physics, Vol. 9 ( Springer, Berlin, Heidelberg, New York 1978 ) pp. 41–82Google Scholar
  76. 5.76
    G.C. Sherman: J. Opt. Soc. Am. 57, 1490–1498 (1967)ADSCrossRefGoogle Scholar
  77. 5.77
    K. Miller: Arch. Rational Mech. Anal. 16, 126–154 (1964)zbMATHGoogle Scholar
  78. 5.78
    C. De Mol: “Sur la Regularisation des Problèmes Inverses Linéaires”; Ph.D. Thesis, Université Libre de Bruxelles (1979)Google Scholar
  79. 5.79
    W.A. Imbriale, R. Mittra: IEEE Trans. AP-18, 633–642 (1970)Google Scholar
  80. 5.80
    H.S. Cabayan, R.C. Murphy, T.J.F. Pavlâsek: IEEE Trans. AP-21, 346–351 (1973)Google Scholar
  81. 5.81
    H.P.S. Ahluwalia, W.M. Boerner: IEEE Trans. AP-21, 663–672 (1973)Google Scholar
  82. 5.82
    H.P.S. Ahluwalia, W.M. Boerner: IEEE Trans. AP-22, 673–682 (1974)Google Scholar
  83. 5.83
    N.N. Bojarski: “A Survey of Electromagnetic Inverse Scattering”; Syracuse Univ. Res. Corp., Special Projects Lab. Rpt., DDC #AD-813–851 (1966)Google Scholar
  84. 5.84
    R.M. Lewis: IEEE Trans. AP-17, 308–314 (1969)Google Scholar
  85. 5.85
    W. Tabbara: IEEE Trans. AP-21, 245–247 (1973)Google Scholar
  86. 5.86
    W.L. Perry: IEEE Trans. AP-22, 826–829 (1974)Google Scholar
  87. 5.87
    W. Tabbara: IEEE Trans. AP-23, 446–448 (1975)Google Scholar
  88. 5.88
    R.D. Mager, N. Bleistein: IEEE Trans. AP-26, 695–699 (1978)Google Scholar
  89. 5.89
    W.H.J. Fuchs: J. Math. Anal. Appl. 9, 317–330 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  90. 5.90
    R.W. Hart, E.P. Gray: J. Appl. Phys. 35, 1408–1415 (1964)ADSCrossRefGoogle Scholar
  91. 5.91
    E. Wolf: Opt. Commun. 1, 153–156 (1969)ADSCrossRefGoogle Scholar
  92. 5.92
    R. Dändliker, K. Weiss: Opt. Commun. 1, 323–328 (1969)CrossRefGoogle Scholar
  93. 5.93
    H.A. Ferwerda, B.J. Hoenders: Optik 39, 317–326 (1974)Google Scholar
  94. 5.94
    A.J. Devaney: J. Math. Phys. 19, 1526–1531 (1978)ADSCrossRefGoogle Scholar
  95. 5.95
    E. Wolf: J. Opt. Soc. Am. 60, 18–20 (1970)ADSCrossRefGoogle Scholar
  96. 5.96
    W.H. Carter: J. Opt. Soc. Am. 60, 306–314 (1970)ADSCrossRefGoogle Scholar
  97. 5.97
    W.H. Carter, P.C. Ho: Appl. Opt. 13, 162–172 (1974)ADSCrossRefGoogle Scholar
  98. 5.98
    P.C. Ho, W.H. Carter: Appl. Opt. 15, 313–314 (1976)ADSCrossRefGoogle Scholar
  99. 5.99
    J. Radon: Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Phys. Kl. 69,262–271(1917)Google Scholar
  100. 5.100
    K.T. Smith, D.C. Solomon, S.L. Wagner: Bull. AMS 83, 1227–1270 (1977)zbMATHCrossRefGoogle Scholar
  101. 5.101
    L.A. Shepp, J.B. Kruskal: Am. Math. Monthly 85, 420–439 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  102. 5.102
    R.N. Bracewell, A.C. Riddle: The Astrophys. J. 150, 427–434 (1967)ADSCrossRefGoogle Scholar
  103. 5.103
    R.A. Crowther, D.J. Rosier, A. Klug: Proc. Roy. Soc. London A-317, 319–340 (1970)ADSGoogle Scholar
  104. 5.104
    Y. Das, W.M. Boerner: IEEE Trans. AP-26, 274–279 (1978)ADSGoogle Scholar
  105. 5.105
    M.V. Berry, D.F. Gibbs: Proc. Roy. Soc. London A-314, 143–152 (1970)ADSGoogle Scholar
  106. 5.106
    L. Colin (ed): “Mathematics of Profile Inversion”, NASA TM-X-62.150 (1972)Google Scholar
  107. 5.107
    E.C. Titchmarsh: Introduction to the Theory of Fourier Integrals, 2nd ed. ( Oxford Universtiy Press, Oxford 1948 )Google Scholar
  108. 5.108
    J.G. McWhirter, E.R. Pike: J. Phys. A-11, 1729–1745 (1978)Google Scholar
  109. 5.109
    J.G. McWhirter, E.R. Pike: Phys. Scr. 19, 417–425 (1979)ADSCrossRefGoogle Scholar
  110. 5.110
    G.A. Deschamps, H.S. Cabayan: IEEE Trans. AP-20, 268–274 (1972)Google Scholar
  111. 5.111
    H.G. Schmidt-Weinmar: “Spatial Resolution of Subwavelength Sources from Optical Far-Zone Data”, in Inverse Source Problems in Optics, ed. by H.P. Baltes, Topics in Current Physics, Vol. 9 ( Springer, Berlin, Heidelberg, New York 1978 ) pp. 83–118Google Scholar
  112. 5.112
    J.R. Cannon, K. Miller: J. SIAM Numer. Anal. B-2, 87–98 (1965)Google Scholar
  113. 5.113
    K. Miller, G.A. Viano: Nucl. Phys. B-25, 460–470 (1971)Google Scholar
  114. 5.
    G. Alessandrini: An Extrapolation Problem for Harmonic Functions“, Bollettino U.M.I. (to be published)Google Scholar
  115. 5.115
    G. Alessandrini: On Differentiation of Approximately Given Functions“, preprint Istituto Matematico U. Dini, Firenze (1979)Google Scholar
  116. 5.116
    F. John: Ann. Mat. Pura Appl. 40, 129–142 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  117. 5.117
    G.C. Sherman, J.J. Stamnes, E. Lalor: J. Math. Phys. 17, 760–776 (1976)ADSMathSciNetCrossRefGoogle Scholar
  118. 5.118
    H.P. Baltes, H.G. Schmidt-Weinmar: Phys. Lett. 60A, 275–277 (1977)Google Scholar
  119. 5.119
    H.G. Schmidt-Weinmar, W.B. Ramsay: Appl. Phys. 14, 175–181 (1977)ADSCrossRefGoogle Scholar
  120. 5.120
    H.G. Schmidt-Weinmar: Can. J. Phys. 55, 1102–1114 (1977)ADSCrossRefGoogle Scholar
  121. 5.121
    J.T. Foley, E. Wolf: J. Opt. Soc. Am. 69, 761–764 (1979)ADSCrossRefGoogle Scholar
  122. 5.122
    H.P. Baltes, B. Steinle: J. Opt. Soc. Am. 69, 910 (1979)ADSCrossRefGoogle Scholar
  123. 5.123
    D.K. Lam, H.G. Schmidt-Weinmar, A. Wouk: Can. J. Phys. 54, 1925–1936 (1976)ADSMathSciNetCrossRefGoogle Scholar
  124. 5.124
    A.F. Fercher, H. Bartelt, H. Becker, E. Wiltschko: Appl. Opt. 18, 2427–2439 (1979)ADSCrossRefGoogle Scholar
  125. Anger, G. (ed.): Inverse and Improperly Posed Problems in Differential Equations, Proc. of the Conference on Mathematical and Numerical Methods held in Halle/Saale (GDR) ( Akademie-Verlag, Berlin 1979 )Google Scholar
  126. Barakat, R., Blackman, E.: Application of the Tichonov regularization algorithm to object restoration. Opt. Commun. 9, 252–256 (1973)ADSCrossRefGoogle Scholar
  127. Bertero, M., De Mol, C.: Stability problems in inverse diffraction, Preprint 1980 Ciulli, S., Pomponiu, C., Sabba-Stefanescu, I.: Analytic extrapolation techniques and stability problems in dispersion relation theory. Phys. Rep. 17, 133–224 (1975)Google Scholar
  128. Colton, D.: The inverse scattering problem for a cylinder. Proc. Roy. Soc. of Edinburgh 84A, 135–143 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  129. Majda, A.: High frequency asymptotics for the scattering matrix and the inverse problem of acoustic scattering. Comm. Pure Appl. Math. 30, 165–194 (1977)zbMATHMathSciNetGoogle Scholar
  130. Nashed, M.Z. (ed.): Ill—Posed Problems: Theory and Practice, Proc. of the International Symposium held at the University of Delaware, October 2–6, 1979 (in preparation)Google Scholar
  131. Ramm, A.G.: On resolution ability of optical systems. Optics and Spectroscopy 29, 422–424 (1970)Google Scholar
  132. Sabatier, P.C.: Positivity constraints in linear inverse problems I and II. Geophys. J. R. Astr. Soc. 48, 415–442 and 443–469 (1977)Google Scholar
  133. Krishnaprasad, P.S., Barakat, R.: A descent approach to a class of inverse problems. J. Computational Phys. 24, 339–347 (1977)zbMATHADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

There are no affiliations available

Personalised recommendations